Analysis of the influence of different types of cement on the resistance to attack by sulfates

Analysis of the influence of different types of cement on the resistance to attack by sulfates

Authors

DOI:

https://doi.org/10.5433/1679-0375.2021v42n2p181

Keywords:

Ettringite, Sulphate attack, Microstructure

Abstract

The diversity of the types of cement manufactured, driven by the extensive use of additions, has given cementitious composites properties that can directly interfere in the durability and useful life of concrete. Considering the interaction of sulfate ions with cement hydration products, in order to understand it becomes essential for the proper choice of materials in order to protect the structures from this aggressor agent. In order to verify the influence of the choice of cement type on the resistance to attack by sulfates, this article analyzes the compressive strength; sulfate content, electron microscopy and energy dispersive spectroscopy of mortars made with cements CP II-F-32, CP IV-32 and CP V-ARI submitted to calcium, sodium and magnesium sulfate solutions for 4 months. The specimens exposed to calcium and sodium sulfate solutions showed increased compressive strength at early ages due to the formation of ettringite in the pores. On the other hand, CP II-F-32 cement showed the greatest deterioration due to magnesium sulfate attack.

Metrics

Metrics Loading ...

Author Biographies

Daniele Neida Schiavini, Universidade Tecnológica Federal do Paraná - UTFPR

Civil Engineering student, DACOC/UTFPR, UTFPR, Curitiba, PR,

Wellington Mazer, Universidade Tecnológica Federal do Paraná - UTFPR

Prof. Dr., Departamento Acadêmico de Construção Civil, UTFPR, Curitiba, PR,

Elizamary Otto Ferreira, Universidade Tecnológica Federal do Paraná - UTFPR

Master student, DACOC/UTFPR, UTFPR, Curitiba, PR

Juliana M. McCartney Fonseca, Universidade Tecnológica Federal do Paraná - UTFPR

Mestrando, DACOC / UTFPR, UTFPR, Curitiba, PR

References

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 248: agregados – determinação da composição granulométrica. Rio de Janeiro: ABNT, 2003. p. 1 – 6.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: cimento Portland – determinação da resistência à compressão. Rio de Janeiro: ABNT, 1996. p. 1 – 8.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 11578: cimento Portland composto. Rio de Janeiro: ABNT, 1991. p. 1 – 5.

AHMAD, M. H.; NOOR, N. M. Chemical attack of Malaysian pozzolans concrete. Journal of Science and Technology, London, v. 1, p. 11 – 24, 2009.

AL–AMOUDI, O. S. B. Attack on plain and blended cements exposed to aggressive sulfate environments. Cement & Concrete Composites. 24, 305 – 316, 2002.

AL–SALAMI, A. E.; SALEM, A. Effects of mix composition on the sulfate resistance of blended cements. International Journal of Civil & Environmental Engineering, [Ghaziabad], v. 10, n. 6, p. 37 – 41, 2010.

AMIN, M. M.; JAMALUDIN, S. B.; PA, F. C.; CHUEN, K. K. Effects of magnesium sulfate attack on ordinary Portland cement (OPC) mortars. Portugaliae Electrochimica Acta, Aveiro, v. 26, p. 235 – 242, 2008.

ASTM - AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test methods for chemical analysis of hydraulic cement. West Conshohocken: ASTM International, 2007. DOI 10.1520/C0114–07.

BHATTY, J. I.; TAYLOR, P. C. Sulfate resistance of concrete using blended cements or supplementary cementitious materials. [S. l.]: Portland Cement Association, 2006. p. 1 – 21. (R&D Serial, n. 2916a).

BROWN, P. W.; BADGER, S. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack. Cement and Concrete Research, Elmsford, v. 30, p. 1535 – 1542, 2000.

CAMPOS, M. A.; PAULON, V. A. Utilização de agregados alternativos de isoladores elétricos de porcelana em concretos. Concreto y Cemento Investigación y Desarrollo, Ciudad del México, v. 7, n. 1, p. 30 – 43, 2015.

CEFIS, N.; COMI, C. Chemo–mechanical modelling of the external sulfate attack in concrete. Cement and Concrete Research, Oxford, v. 93, p. 57–70, 2017.

CHEN, Y.; LIU, P.; YU, Z. Study on degradation of macro performances and micro structure of concrete attacked by sulfate under artificial simulated environment. Construction and Building Materials, Guildford, v. 260, p. 119951, 2020. DOI 10.1016/j.conbuildmat.2020.119951.

HOPE FILHO, J.; SOUZA, M. H. F.; PEREIRA, E.; PORTELLA, K. F. Ataque de matrizes cimentícias por sulfato de sódio: adições minerais como agentes mitigadores. Cerâmica, São Paulo, v. 61, n. 358, p. 168–177, 2015.

GAO, X.; MA, B.; YANG, Y.; SU, A. Sulfate attack of cement–based material with limestone filler exposed to different environments. Journal of Materials Engineering and Performance, Materials Park, v. 17, p. 543 – 549, 2008.

GONZÁLEZ, M. A.; IRASSAR, E. F. Effect of limestone filler on the sulfate resistance of low C3A Portland cement. Cement and Concrete Research, Oxford, v. 28, n. 11, p. 1655 – 1667, 1998.

GUO, J.; LIU, P.; WU, C.; WANG, K. Effect of dry–wet cycle periods on properties of concrete under sulfate attack. Applied Sciences, Basel, v. 11, n. 888, 2021. DOI: doi.org/10.3390/app11020888.

IRASSAR, E. F. Sulfate attack on cementitious materials containing limestone filler: a review. Cement and Concrete Research, Oxford, v. 39, p. 241 – 254, 2009.

LEE, S. T.; LEE, S. H. Sulfate attack and the role of cement compositions. Journal of the Korean Ceramic Society, Seoul, v. 44, n. 9, p. 465 – 470, 2007.

LIU, Z.; DENG, D.; SCHUTTER, G.; YU, Z. The effect of MgSO4 on thaumasite formation. Cement and Concrete Composites. Barking, v. 35, p. 102 – 108, 2013.

MAZER, W.; MACIOSKI, G.; SOTO, N.; BAETTKER, E. Determinação do teor de íons sulfato em estruturas de concreto. In: CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 20., 2014, Florianópolis. Anais […]. Florianópolis: Cobeq, 2014. p. 13574–13580.

MENNA JUNIOR, D.; BALCÃO, V. M. C. F.; CHAUD, M. V.; VILA, M. M. D. C.; ARANHA, N.; YOSHIDA, V. M. H.; OLIVEIRA JUNIOR, J. M. Physicochemical evaluation of portland cement produced in Brazil via X-ray fluorescence and mechanical strength, Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, n. 1, p. 3-12, 2020. DOI: http://dx.doi.org/10.5433/1679-0375.2020v41n1p3.


NAJIMI, M.; POURKHORSHIDI, J. S. A. R. Durability of copper slag contained concrete exposed to sulfate attack. Construction and Building Materials. Guildford, v. 25, p. 1896 – 1905, 2011.

PIASTA, W.; MARCZEWSKA, J.; JAWORSKA, M. Some aspects and mechanisms of sulfate attack. Structure and Environment, Kielce, v. 6, p. 19 – 24, 2014.

PRASAD, J.; JAIN, D. K.; AHUJA, A. K. Factors influencing the sulphate resistance of cement concrete and mortar. Asian Journal of Civil Engineering: Building and Housing, Switzerland, v. 7, n. 3, p. 259 – 268, 2006.

SKALNY, J.; MARCHAND, J.; ODLER, I. Sulfate Attack on Croncrete. London: Spon Press, 2003.

SHANAHAN, N.; ZAYED, A. Cement composition and sulfate attack Part I. Cement and Concrete Research, Elmsford, v. 37, p. 618, 2007.

TASHIMA, M. M.; FIORITI, C. F.; AKASAKI, J. L.; BERNABEU, J. P.; SOUSA, L. C.; MELGES, J. L. P. Cinza de casca de arroz (CCA) altamente reativa: método de produção e atividade pozolânica. Ambiente Construído, São Paulo, v. 12, n. 2, p. 151 – 163, 2012.

WANG, K.; GUO, J.; WU, H.; YANG, L. Influence of dry-wet ratio on properties and microstructure of concrete under sulfate attack. Construction and Building Materials, Guildford, v. 263, p. 120635, 2020.

ZHANG, M.; CHEN, J.; LV, Y.; WANG, D.; YE, J. Study on the expansion of concrete under attack of sulfate and sulfate–chloride. Construction and Building Materials, Guildford, v. 39, p. 26 – 32, 2013.

ZHANG, Z.; ZHOU, J.; YANG, J.; ZOU, Y.; WANG, Z. Understanding of the deterioration characteristic of concrete exposed to external sulfate attack: Insight into mesoscopic pore structures. Construction and Building Materials, Guildford, v. 260, p. 119932, 2020.

Downloads

Published

2021-11-03

How to Cite

Schiavini, D. N., Mazer, W., Ferreira, E. O., & Fonseca, J. M. M. (2021). Analysis of the influence of different types of cement on the resistance to attack by sulfates. Semina: Ciências Exatas E Tecnológicas, 42(2), 181–192. https://doi.org/10.5433/1679-0375.2021v42n2p181

Issue

Section

Original Article

Most read articles by the same author(s)

Loading...