Optimization of fermenters for ethanol production: Residence Time Analysis apllying Computational Fluid Dynamics

Evelise Roman Corbalan Góis Freire, Paulo Seleghim Junior


The search for new ways to provide fuel for the society is one of the great challenge for scientists and academic researchers. An interesting alternative is the ethanol produced from sugar cane. Brazil has an advantaged position in ethanol production, but the equipment used in the sugar cane plants, the fermenters, for example, still need efficiency improvements. The fermenter geometry has a great influence on the flow parameters and, consequently, in the chemical reactions involved the fermentation process. It is necessary to ensure that the sugar cane juice remains enough in the fermenter enough time to complete the chemical reaction, but not more than the ideal time required, which can reduce the process efficiency.  In this study, the influence of the geometry in the Residence Time Distribution (RTD) was analyzed by a computational tracer injection technique. Besides, 20 geometries were proposed by a univariate optimization. Results show the inlet angle has the major influence in the flow and the optimum geometry for the continuous fermenter must have 22.5° for inlet angle and 120 cm for outlet tube height. Considering the fermenters large scales in sugarcane juice processing, the improvement proposed in the fermenter geometry can increase the profits and reduce environmental impacts.


Residence time distributions. Computational fluid dynamics. Fermenters. Ethanol production.

Full Text:



ANSONI, J. L.; SELEGHIM, P. Jr. Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions. Advances in Engineering Software. 91:23-35, 2016. DOI: https://doi.org/10.1016/j.advengsoft.2015.08.008.

BOSCO, F., Busca pela vanguarda, Alcoolbras, Edição no 102, Accessed: December, 2019

CHOI, B. S., et al. Residence Time Distributions in a Stirred Tank: Comparison of CFD Predictions with Experiment. Industrial & Engineering Chemistry Research 43(20): 6548-6556, 2004. DOI: https://doi.org/10.1021/ie0308240.

CORTES, S. L., et al., Optimization of fermentation conditions in the production of ethanol from Palmer mango. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 39, n. 1, p. 34-41, 2018. DOI: https://doi.org/10.5433/1679-0375.2018v39n1p34

DAVIDSON, K. M., et al., Using Computational Fluid Dynamics Software to Estimate Circulation Time Distributions in Bioreactors. Biotechnology Progress. 19: 1480-1486, 2003. DOI: https://doi.org/10.1021/bp025580d

DIAS, M., et al., Simulation of integrated first and second generation ethanol production from sugarcane: comparison between different biomass pretreatment methods. Journal of Industrial Microbiology & Biotechnology 38(8): 955-966, 2011. DOI: https://doi.org/10.1007/s10295-010-0867-6

DING, J., et al., CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology 101(18): 7005-7013, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.03.146

FOGLER, H. S. Elementos de Engenharia das Reações Químicas, 4a. Ed. Rio de Janeiro: LTC, 2009.

GAVRILESCU, M.; TUDOSE, R. Z. Residence time distribution of the liquid phase in a concentric-tube airlift reactor. Chemical Engineering and Processing: Process Intensification 38(3): 225-238, 1999. DOI: https://doi.org/10.1016/S0255-2701(99)00005-7

GONÇALVES, T. A. C., et al., Estudo da distribuição do tempo de residência em um reator contínuo de tanque agitado. Brazilian Journal of Development 5(10): 17779-17784, 2019. DOI: https://doi.org/10.34117/bjdv5n10-046

HARINGA, C., et al., Euler-Lagrange computational fluid dynamics for (bio)reactor scale

down: An analysis of organism lifelines. Engineering in life Sciences. 16, 652–663, 2016.

DOI: https://doi.org/10.1002/elsc.201600061

LE MOULLEC, Y., et al., Flow field and residence time distribution simulation of a cross-flow gas–liquid wastewater treatment reactor using CFD. Chemical Engineering Science 63(9): 2436-2449, 2008. DOI: https://doi.org/10.1016/j.ces.2008.01.029

NOGUEIRA, L. A. H. Bioetanol de Cana-de-açúcar. Energia para o desenvolvimento sustentável. Rio de Janeiro: BNDES e CGCE, 2008. 316p.

PATWARDHAN, A. W., et al., Optimization of gas-liquid reactor using computational fluid dynamics. Chemical Engineering Science 60(11): 3081-

, 2005. DOI: https://dx.doi.org/10.1590/0104-6632.20190364s20180450

ROMEIRO, N. M. L., et al., Numerical simulation of BOD5 dynamics in Igapó I lake, Londrina, Paraná, Brazil: Experimental measurement and mathematical modeling. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 38, n. 2, p. 50-58, 2017. DOI: http://doi.org/10.5433/1679-0375.2017v38n2p50

SARRIS, I., et al., A three-dimensional CFD model of direct ethanol fuel cells: Anode flow bed analysis. Solid State Ionics 177(19–25): 2133-2138, 2006. DOI: https://doi.org/10.1016/j.ssi.2006.02.019

SASSAKI, R. A. Distribuição de Tempos de Residência em Sistemas Alimentados com Vazão Variável. 100 pp. (Mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2005.

XIA, J.Y., WANG, S.J., ZHANG, S. L., ZHONG, J. J., Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor. Biochemical Engineering Journal 38(3): 406-413, 2008. DOI: https://doi.org/10.1016/j.bej.2007.08.006

ZHANG, L., PAN, Q., REMPEL, G. Residence Time Distribution in a Multistage Agitated Contactor with Newtonian Fluids: CFD Prediction and Experimental Validation. Industrial & Engineering Chemistry Research 46(11): 3538-3546, 2007. DOI: https://doi.org/10.1021/ie060567+

DOI: http://dx.doi.org/10.5433/1679-0375.2020v41n1p51

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Semin., Ciênc. Exatas Tecnol.
Londrina - PR - Brazil
E-ISSN: 16790375
DOI: 10.5433/1679-0375
Email: seminaexatas@uel.br
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.