Performance, carcass characteristics, and health parameters of growing and finishing pigs fed with diets supplemented with isoquinoline alkaloids and essential oils

Arthur de Sousa Massei, Cleandro Pazinato Dias, Marco Aurélio Callegari, Caio Abércio da Silva

Abstract


The goal of this study was to evaluate, in a commercial herd, the use of isoquinoline alkaloids and carvacrol versus a preventive antibiotic program, such as feed additives, on the performance, carcass traits, and health status of pigs in the growing and finishing phase. There were 576 PIC immunocastrated males and females, at 70 days of age and 28.429 ± 2.302 kg of initial weight used. The experimental design was a 4 × 2 factorial randomized block, with four preventive programs, two sexes, and six repetitions per treatment (the pen with 12 animals of the same sex was the replicate). The treatments were T1 (positive control program with antibiotic shocks at preventive level), T2 (negative control with the absence of antibiotics as a growth promoter or as preventive), T3 (isoquinoline alkaloids at 100 to 150 g ton-1), T4 (isoquinoline alkaloids at 90 g ton-1 + carvacrol essential oil at 1 kg ton-1). T1 and T3 presented higher daily feed intakes, followed by T2, and T4 showed the worst feed consumption (P < 0.05). T1 showed higher daily weight gain compared to T4 (P < 0.05), without differences between T2 and T3. T2 showed better feed conversion than T1 and T3, but it was similar to T4. There were no effects of the treatments on the carcass traits. Intestinal crypt hyperplasia and crypt abscesses (lesions caused by Lawsonia intracellularis) were significantly higher for T2 and T3 compared to T1, which was similar to T4. T2 presented the highest carcass condemnation at slaughter (7%), differing (P < 0.05) from T1, T3, and T4 (1, 2, and 3%, respectively). Isoquinoline alkaloids are an alternative for antibiotic-free diets for pigs in the growing and finishing phase, preserving the performance and carcass indices and minimizing sanitary carcass condemnations at the slaughterhouse.

Keywords


Antibiotics; Lawsonia intracellularis; Phytogenics; Plant extracts; Sanguinarine.

Full Text:

PDF

References


Aguilar-Hernández, J. A., Urías-Estrada, J. D., López-Soto, M. A., Barreras, A., Plascencia, A., Montano, M., Gonzáles-Vizcarra, V. M., Estrada-Angulo, A., Castro-Pérez, B. I., Barajas, R. Rogge, H. I., & Zinn, R. A. (2016). Evaluation of isoquinoline alkaloid supplementation levels on ruminal fermentation, characteristics of digestion, and microbial protein synthesis in steers fed a high-energy diet. Journal of Animal Science, 94(1), 267-274. doi: 10.2527/jas.2015-9376

Alberton, G. C., & Mores, M. A. Z. (2008). Interpretação de lesões no abate como ferramenta de diagnóstico das doenças respiratórias dos suínos. Acta Scientiae Veterinariae, 36(1), 95-99. https://www.redalyc.org/ pdf/2890/289060014014.pdf

Alves, R. T., Jr., Souza, E. J. O., Melo, A. A. S., Silva, D. K. A., Torres, T. R., Pereira, G. F. C., Silva, C.S., & Silva, J. R. C. (2017). Mesquite extract as phytogenic additive to improve the nutrition of sheep. Journal of Agricultural Science, 9(7), 164-174. doi: 10.5539/jas.v9n7p164

Boroojeni, F. G., Männer, K., & Zentek, J. (2018). The impacts of Macleaya cordata extract and naringin inclusion in post-weaning piglet diets on performance, nutrient digestibility and intestinal histomorphology. Archives of Animal Nutrition, 72(3), 178-189. doi: 10.1080/1745039X.2018.1459342

Bridi, A. M., & Silva, C. A. (2009). Avaliação da carne suína. Midiograf.

Caldefie-Chézet, F., Fusillier, C., Jarde, T., Laroye, H., Damez, M., Vasson, M. P., & Guillot, J. (2006). Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytotherapy Research, 20(5), 364-370. doi: 10.1002/ptr.1862

Cardinal, K. M., Pires, P. G. da S., & Ribeiro, A. M. L. R. (2020). Growth promoter in broiler and pig production. Pubvet, 14(3), 1-11. doi: 10.31533/pubvet.v14n3a532.1-11

Chaturvedi, M. M., Kumar, A., Darnay, B. G., Chainy, G. B. N., Agarwal, S., & Aggarwal, B. B. (1997). Sanguinarine (Pseudochelerythrine) is a potentinhibitor of NF-kBactivation, IkBaphosphorylation, and degradation. The Journal of Biological Chemistry, 272(48), 30129-30134. doi: 10.1074/jbc.272.48.30129

Chen, J., Kang, B. , Yao ,K., Fu, C., & Zhao, Y. (2019). Effects of dietary Macleaya cordata extract on growth performance, immune responses, antioxidant capacity, and intestinal development in weaned piglets. Journal of Applied Animal Research, 47(1), 349-356. doi: 10.1080/09712119.2019.1636800

Chen, J., Kang, B., Zhao Y., Yao, K., & Fu, C. (2018). Effects of natural dietary supplementation with Macleaya cordata extract containing sanguinarine on growth performance and gut health of early-weaned piglets. Journal of Animal Physiology and Animal Nutrition, 102(6), 1666-1674. doi: 10.1111/jpn.12976

Croaker, A., King, G. J., Pyne, J. H., Anoopkumar-Dukie, S., & Liu, L. (2016). Sanguinaria canadensis: Traditional medicine, phytochemical composition, biological activities and current uses. International Journal of Molecular Sciences, 17(9), 1-32. doi: 10.3390/ijms17091414

Decreto nº 10.468, de 18 de agosto de 2020 (2020). Altera o Decreto nº 9.013, de 29 de março de 2017, que regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre o regulamento da inspeção industrial e sanitária de produtos de origem animal. http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/decreto/d10468.htm

Denck, F. M., Hilgemberg, J. O., & Lehnen, C. R. (2017). Uso de acidificantes em dietas para leitões em desmame e creche. Archivos de Zootecnia, 66(256), 629-638. https://www.redalyc.org/pdf/495/495535 71021.pdf

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines, 3(25), 1-16. doi: 10.3390/ medicines3040025

Drsata, J., Ulrichová, J., & Walterová, D. (1996). Sanguinarine and chelerythrine as inhibitors of aromatic amino acid decarboxylase. Journal of Enzyme Inhibition, 10(4), 231-237. doi: 10.3109/1475636960903 6530

Fernandes, R. T. V., Arruda, A. M V., Oliveira, V. R. M., Queiroz, J. P. A. F., Melo, A. S., Dias, F. K. D., Marinho, J. B. M., Souza, R. F., Souza, A. O. V., & Santos, C. A., Fº. (2015). Aditivos fitogênicos na alimentação de frangos de corte: óleos essenciais e especiarias. PubVet, 9(12), 526-535. https://www.pubvet.com.br/uploads/c1d589225efd088189c4986bda5a10e6.pdf

Guedes, R. M. C., Gebhart, C. J., Armbruster, G. A., & Roggow, B. D. (2002). Serologic follow-up of a repopulated swine herd after an outbreak of proliferative hemorrhagic enteropathy. Canadian Journal of Veterinary Research, 66(4), 258-263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC227013/pdf/2002 1000s00006p258.pdf

Holman, D. B., & Chénier, M. R. (2013). Impact of subtherapeutic administration of tylosin and chlortetracycline on antimicrobial resistance in farrow-to-finish swine. FEMS Microbiology Ecology, 85(1), 1-13. doi: 10.1111/1574-6941.12093

Imanpoor, M. R., & Roohi, Z. (2016). Effects of Sangrovit-supplemented diet on growth performance, blood biochemical parameters, survival and stress resistance to salinity in the Caspian roach (Rutilus rutilus) fry. Aquaculture Research, 47(9), 2874-2880. doi: 10.1111/are.12737

Jiao, Y., Upadhaya, S. D., & Kim, I. H. (2019). Effects of nucleotide supplementation to corn-soybean meal-based diet on growth performance, fecal microflora, and blood profiles of sows and performance of suckling piglets. Canadian Journal of Animal Science, 99(4), 754-763. doi: 0.1139/cjas-2018-0222

Kantas, D., Papatsiros, V. G., Tassis, P. D., Athanasiou, L. V., & Tzika, E. D. (2015). The effect of a natural feed additive (Macleaya cordata), containing sanguinarine, on the performance and health status of weaning pigs. Animal Science Journal, 869(1), 92-98. doi: 10.1111/asj.12240

Karimi, M., Foroudi, F., & Abedini, M. R. (2014). Effect of Sangrovit on performance and morphology of small intestine and immune response of broilers. Biosciences Biotechnology Research Asia, 11(2), 855-861. doi: 10.13005/bbra/1348

Kim, H. B., Borewicz, K., White, B. A., Singer, R. S., Sreevatsan, S., Jin Tu, Z., & Isaacson, R. E. (2012). Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15485-15490. doi: 10.1073/pnas.1205147109

Kosina, P., Gregorova, J., Gruz, J., Vacek, J., Kolar, M., Vogel, M., Roos, W., Naumann, K., Simanek, V., & Ulrichova, J. (2010). Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia, 81(8), 1006-1012. doi: 10.1016/j.fitote.2010.06.020

Kroll, J. J., Roff, M. B., Hoffman, L. J., Dickon, J. S., & Harris, D. L. H. (2005). Profiferative enteropathy : a global enteric disease of pigs caused by Lawsonia intracellularis. Animal Heath Research Reviews 6(2), 173-197. doi: 10.179/AHR2005109

LeBel, G., Vaillancourt, K., Bercier, P., & Grenier, D. (2019). Antibacterial activity against porcine respiratory bacterial pathogens and in vitro biocompatibility of essential oils. Archives of Microbiology, 201, 833-840. doi: 10.1007/s00203-019-01655-7

Li, P., Piao, X., Ru, Y., Han, X., Xue, L., & Zhang, H. (2012). Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian Australasian Journal of Animal Sciences, 25(11), 1617-1626. doi: 10.5713/ajas.2012.12292

Li, Y., Xu, F., Tong, X., Chen, R., Shen, C., Liang, T., Chu, Q., & Zhou, B. (2020). Effects of Macleaya cordata extract on small intestinal morphology and gastrointestinal microbiota diversity of weaned pigs. Livestock Science, 237, 104040. doi: 10.1016/j.livsci.2020.104040

Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., David, P A., Stedtfeld, R. D., Jun Sul, W., Stedtfeld, T. M., Chai, B., Cole, J. R., Hashsham, S. A., Tiedje, J. M., & Stanton, T. B. (2012). In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1691-1696. doi: 10.1073/pnas.1120238109

Maron, D. F., Smith, T. J. S., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health, 9(48), 1-11. doi: 10.1186/1744-8603-9-48

Martins, P. C., Albuquerque, M. P., Machado, I. P., & Mesquita, A. A. (2013). Implicações da imunocastração na nutrição de suínos e nas características de carcaça. Archivos de Zootecnia, 62, 105-118. https://www. redalyc.org/pdf/495/49558826008.pdf

Mcorist, S., Roberts, L., Jasni, S., Rowland, A. C., Lawson, G. H. K., Gebhart, C. J., & Bosworth, B. (1996). Developed and resolving lesions in porcine proliferative enteropathy: Possible pathogenetic mechanisms. Journal of Comparative Pathology, 115(1), 35-45. doi: 10.1016/S0021-9975(96)80026-0

Nowland, T. L., Plush, K. J., Barton, M., & Kirkwood, R. N. (2019). Development and function of the intestinal microbiome and potential implications for pig production. Animals, 9(3), 1-15. doi: 10.3390/ani9030076

Schmeller, T., Latz-Brüning, B., & Wink, M. (1997). Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry, 44(2), 257-266. doi: 10.1016/S0031-9422(96)00545-6

Silva, C. A., Hoshi, E. H., & Sarubbi, J. (2003). Tilmicosina nas rações de suínos em fases de crescimento e terminação. Semina: Ciências Agrárias, 24(1), 113. doi: 10.5433/1679-0359.2003v24n1p113

Silva, Ê. C., Bretz, B. A. M., Rocha, V. P., & Araújo, L. R. S. (2020). Análise de condenações de carcaça ao abate de suínos em abatedouros frigoríficos brasileiros registrados no serviço brasileiro de inspeção federal entre 2012 e 2017. Revista Brasileira Multidisciplinar, 23(3), 76-85. doi: 10.25061/2527-2675/ ReBraM/2020.v23i3.806

Simitzis, P. E. (2017). Enrichment of animal diets with essential oils - a great perspective on improving animal performance and quality characteristics of the derived products. Medicines, 4(35), 1-21. doi: 10.3390/ medicines4020035

Sola-Oriol, D., Roura, E., & Torrallardona, D. (2011). Feed preference in pigs: effect of selected protein, fat, and fiber sources at different inclusion rates. Journal of Animal Science, 89(10), 3219-3227. doi: 10.25 27/jas.2011-3885

Yan, L., Meng, Q. W., & Kim, L. H. (2012). Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. Livestock Science, 145(1-3), 189-195. doi: 10.1016/j.livsci.2012.02.001

Zeng, Z., Zhang, S., Wang, H., & Piao, X. (2015). Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. Journal of Animal Science and Biotechnology, 6(1), 7-17. doi: 10.1186/s40 104-015-0004-5

Zotti, E., Silva, C. A., & Bridi, A. M. (2009). Programas preventivos com antibióticos para suínos em fase de creche e efeitos no desempenho, características de carcaça e índices sanitários. PUBVET, 3(9), 1-13. http://pubvet.com.br/material/Silva529.pdf




DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n4p1423

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional