Effect of microbial inoculant on the fermentation profile, nutritional value and microbial population on corn, sorghum, and pearl millet silages

Sarah Ellen Eduardo Bernardo, Paulo Henrique Borgati Chrisostomo, Michele Gabriel Camilo, Danielle Ferreira Baffa, Elizabeth Fonsêca Processi, Alberto Magno Fernandes, Tadeu Silva de Oliveira

Abstract


The objective of the present study was to evaluate the use of microbial inoculant on the chemical composition, in vitro gas production, pH, dry matter losses, aerobic stability and microbial population on silages of corn, sorghum and pearl millet in plastic bags silos (without vacuum). The experiment was carried out in a randomized block design, in a 2 × 3 factorial scheme, with and without (control) inoculant consisting of Lactobacillus plantarum and Propionibacterium acidipropionici and on three crops, corn, sorghum and pearl millet, with four replicates. The use of the inoculant did not affect the chemical composition of the silages, except the crude protein (P = 0.0062) and lignin (P = 0.0567) contents. Gas production was neither affected (P > 0.05) by the inoculant nor by the crop. Regarding aerobic stability, we observed that the inoculant affected the temperature of the sorghum silage (P = 0.0123). The inoculant decreased the N-NH3 (P =0.0095) content and increased (P = 0.0441) the lactic acid bacteria population in the silages. Thus, the microbial inoculant did not improve the fermentation profile or nutritional value of corn, pearl millet and sorghum silages in plastic bag silos (without vacuum).

Keywords


Conservation; Fermentation capacity; Inoculant; Lactic acid bacteria.

Full Text:

PDF

References


Abreu, M. L. C., Vieira, R. A. M., Rocha, N. S., Araújo, R. P., Glória, L. S., Fernandes, A. M., Lacerda, P. D., & Gesualdi, A., Jr. (2014). Clitoria ternatea L. as a potential high quality forage legume. Asian-Australasian Journal of Animal Sciences, 27(2), 169-178. doi: 10.5713/ajas.2013.13343

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes, J. L. G., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/ 0507

Amaral, R. C., Santos, M. C., Daniel, J. L. P., Sá, A., Neto., Bispo, A. W., Cabezas-Garcia, E. H., Bernardes, T. F., & Nussio, L. G. (2014). The influence of covering methods on the nutritive value of corn silage for lactating dairy cows. Revista Brasileira de Zootecnia, 43(9), 471-478. doi: 10.1590/S1516-3598201400 0900003

Association of Official Analytical Chemistry (2019). Official methods of analysis (21nd ed.). Gaithersburg, Maryland: AOAC.

Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88, 9-21. doi: 10.3168/jds.S0022-0302(05)73133-7

Bernardes, T. F., & Rêgo, A. C. (2014). Study on the practices of silage production and utilization on Brazilian dairy farms. Journal of Dairy Science, 97(3), 1852-1861. doi: 10.3168/jds.2013-7181

Blajman, J. E., Vinderola, G., Páez, R. B., & Signorini, M. L. (2020). The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. Journal of Agricultural Science, 158, (1-12). doi: 10.1017/S0021859620000386

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018). Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. doi: 10.3168/jds. 2017-13837

Chen, L., Guo, G., Yu, C. Q., Zhang, J., Shimojo, M., & Shao, T. (2015). The effects of replacement of whole-plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration silage in Tibet. Animal Science Journal, 86(1), 69-76. doi: 10.1111/asj.122 45

Detmann, E., Souza, M. A., Valadares, S. C., F°., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. E., Cabral, L. S., Pina, D. S., Ladeira, M. M., & Azevedo, J. A. G. (2012). Métodos para análise de alimentos (INCT - Ciência animal). Universidade Federal de Viçosa.

Diether, N. E., & Willing, B. P. (2018). Microbial fermentation of dietary protein: an important factor in diet–microbe host interaction. Microorganisms, 7(1), 1-14. doi: 10.3390/microorganisms7010019

Fenner, H. (1965). Method for determining total volatile bases in rumen fluid by steam distillation. Journal of Dairy Science, 48, 251-251, 249-251. doi: 10.3168/jds.S0022-0302(65)88206-6

Gomes, R. S., Almeida, J. C. C., Carneiro, J. C., Azevedo, F. H. V., Lista, F. N., Elyas, A. C. W., & Oliveira, T. S. (2017). Impacts of citrus pulp addition and wilting on elephant grass silage quality. Bioscience Journal, 33(3), 1306-1314. doi: 10.14393/BJ-v36n4a2020-42294

Greenhill, W. L. (1964). Plant juice in relation to silage fermentation. I - The role of the juice. Journal of the British Grassland Society, 19(3), 30-37. doi: 10.1111/j.1365-2494.1964.tb01137.x

Groot, J. C., Cone, J. W., Williams, B. A., Debersaques, F. M., & Lantinga, E. A. (1996). Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology, 64(1), 77-89. doi: 10.1016/S0377-8401(96)01012-7

Kung, L., Jr., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020-4033. doi: 10.3168/jds.2017-13909

Levitt, J. (1980). Responses of plants to environmental stresses (2nd ed.). Academic Press.

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage (2nd ed.). Chalcomb Publications.

McDougall, E. I. (1948). The composition and output of sheep’s saliva. Biochemical Journal, 43(1), 99-109. doi: 10.1042/bj0430099

Muck, R. E., Nadeau, E. M. G., Mcallister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L., Jr. (2018). Recent advances and future uses of silage inoculants. Journal of Dairy Science, 101(5), 3980-4000. doi: 10.3168/jds.2017-13839

Ning, T., Wang, H., Zheng, M., Niu, D., Zuo, S., & Xu, C. (2017). Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages. Asian-Australasian Journal of Animal Sciences, 30(2), 171-180. doi: 10.5713/ajas.16.0046

Queiroz, O. C. M., Ogunade, I. M., Weinberg, Z., & Adesogan, A. T. (2018). Silage review: foodborne pathogens in silage and their mitigation by silage inoculants. Journal of Dairy Science, 101(5), 4132-4142. doi: 10.3168/jds.2017-13901

Wang, B., Hu, S., Yu, X., Jin. L., Zhu, Y., & Jin, F. (2020). Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, 12(3), 1-17. doi: 10.3390/polym12030 530

Wang, K., Sipilä, T. P., & Overmyer, K. (2016). The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Scientific Reports, 6(39403). doi: 10.1038/srep39403

Yánez-Ruiz, D. R., Bannink, A., Dijkstra, J., Kebreab, E., Morgavi, D. P., O’Kiely, P., Reynolds, C. K., Schwarm, A. H., Shingfield, K. J., Yu, Z., & Hristov, A. N. (2016). Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants a review. Animal Feed Science and Technology, 216, 1-18. doi: 10.1016/j.anifeedsci.2016.03.016

Zopollatto, M., Daniel, J. L. P., & Nussio, L. G. (2009). Aditivos microbiológicos em silagens no Brasil: revisão dos aspectos da ensilagem e do desempenho de animais. Revista Brasileira de Zootecnia, 38, 170-189. doi: 10.1590/S1516-35982009001300018




DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n3p1197

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional