Bacillus subtilis Bs10 as an efficient inoculant for growth promotion in soybean plants

Aloisio Freitas Chagas Junior, Gaspar Moreira Braga Junior, Albert Lenno Lima Martins, Lillian França Borges Chagas, Luciane de Oliveira Miller, Andrea Carla Caldas Bezerra

Abstract


Currently, food with low levels of pesticides, sustainable agricultural practices and increased crop productivity have gained prominence worldwide. Rhizobacterial inoculants are an alternative to manage large crops that favors sustainable plant growth. Thereby, this study aimed to assess the effect of increasing doses of inoculant based on the rhizobacterium Bacillus subtilis Bs10 compared to the commercial product based on B. subtilis on the development of soybean culture. Two experiments were carried out with two soybean cultivars, M8210 IPRO and M8615 IPRO, assessed at the vegetative and reproductive stages. Doses of B. subtilis Bs10 with 0, 100, 200, 300, 400 mL per 50 kg seeds were inoculated in each experiment, as well as an additional treatment with commercial product based on B. subtilis. Biomass, nodulation, plant height, internodes, number of pods and number of grains of soybean cultivars were assessed. The inoculation of B. subtilis Bs10 significantly (p < 0.05) improved the agronomic characteristics of both soybean cultivars with an increase in shoot and root biomass, nodulation, phosphorus content, and accumulation of nitrogen in the aerial part. The doses of B. subtilis Bs10 between 200 and 350 mL had significant prominence in increasing the variables studied herein.

Keywords


Bioinoculant; Biomass; Glycine max (L.) Merr.

Full Text:

PDF

References


Ahmad, M., Ahmad, I., Hilger, T. H., Nadeem, S. M., Akhtar, M. F., Jamil, M., Hussain, A., & Zahir, Z. A. (2018). Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. Peer J, 4(6), e5122. doi: 10.7717/peerj. 5122

Ahmad, Z., Wu, J., Chen, L., & Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific Reports, 7(1), 1777. doi: 10.1038/s41598-017-01940-9

Araújo, A. S. F. D., Carneiro, R. F. V., Bezerra, A. A. C., & Araújo, F. F. D. (2010). Coinoculação rizóbio e Bacillus subtilis em feijão-caupi e leucena: efeito sobre a nodulação, a fixação de N2 e o crescimento das plantas. Ciência Rural, 40(1), 182-185. doi: 10.1590/S0103-84782009005000249

Braga, G. M., Jr. (2019). Bioprospecção e eficiência de Bacillus subtilis como promotor de crescimento vegetal na cultura da soja. Tese de doutorado, Universidade Federal do Tocantins, Gurupi, TO, Brasil.

Braga, G. M., Jr., Chagas, L. F. B., Amaral, L. R. O., Miller, L. O., & Chagas, A. F., Jr. (2018). Efficiency of inoculation by Bacillus subtilis on soybean biomass and productivity. Revista Brasileira de Ciências Agrárias, 13(4), e5571. doi: 10.5039/agrarai.v13i4a5571

Braga, G. M., Jr., Colonia, B. S. O., Chagas, L. F. B., Scheidt, G. N., Miller, L. O., & Chagas, A. F., Jr. (2017). Soybean growth promotion and phosphate solubilization by Bacillus subtilis strains in greenhouse. International Journal of Current Research, 9(5), 50914-50918.

Cerqueira, W. F., Morais, J. S., Miranda, J. S., Melo, I. K. S., & Santos, A. F. J. (2015). Influência de bactérias do gênero Bacillus sobre o crescimento de feijão comum (Phaseolus vulgaris L.). Enciclopédia Biosfera, 11(20), 82-93.

Costa, L. C., Tavanti, R. F. R., Tavanti, T. R., & Pereira, C. S. (2019). Desenvolvimento de cultivares de soja após inoculação de estirpes de Bacillus subtilis. Nativa, 7(2), 126-132. doi: 10.31413/nativa.v7i2.6261

Diaz, P. A. E., Baron, N. C., & Rigobelo, E. C. (2019). Bacillus spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Australian Journal of Crop Science, 13(12), 2003-2014. doi: 10. 21475/ajcs.19.13.12.p2003

Empresa Brasileira de Pesquisa Agropecuária (2011). Manual de métodos de análise de solo. EMBRAPA-CNPS.

Gagné-Bourque, F., Mayer, B. F., Charron, J., Vali, H., Bertrand, A., & Jabaji, S. (2015). Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. Plos One, 10(6), e0130456. doi: 10.1371/journal.pone.0130456

Ishak, Z., Mohd Iswadi, M. K., Russman Nizam, A. H., Ahmad Kamil, M. J., & Ernie Eileen. R. R. (2016). Plant growth hormones produced by endophytic Bacillus subtilis strain lkm-bk isolated from cocoa. Malaysian Cocoa Journal, 9(1), 127-133.

James, T. S., Chairman, D. R. B., Vice, C., Don, J. B., Paul, V., George, M. G., MIchael, G., Noel, R. K., Fred, A. R., & Karl-Heinz, S. (2005). Bergey’s manual of systematic bacteriology. Springer.

Kamali, F. P., Meuwissen, M., Boer, I., Middelaar, C. V., Moreira, A., & Lansink, A. O. (2017). Evaluation of the environmental, economic, and social performance of soybean farming systems in southern Brazil. Journal of Cleaner Production, 142(1), 385-394. doi: 10.1016/j.jclepro.2016.03.135

Kumari, S., Prabha, C., Singh, A., Kumari, S., & Kiran, S. (2018). Optimization of indole-3-acetic acid production by diazotrophic B. subtilis DR2 (KP455653), isolated from rhizosphere of Eragrostisc ynosuroides. International Journal of Pharma Medicine and Biological Sciences, 7(2), 20-25. doi: 10.18 178/ijpmbs.7.2.20-27

Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: mechanism and current prospective. Journal of Fertilizers and Pesticides, 6(2), 1-9. doi: 10.4172/2471-2728.1000155

Lima, F. F., Nunes, L. A., Figueiredo, M. D. V., Araújo, F. F. de, Lima, L. M., & Araújo, A. S. de. (2011). Bacillus subtilis e adubação nitrogenada na produtividade do milho. Revista Brasileira de Ciências Agrárias, 6(4), 657-661. doi: 10.5039/agraria.v6i4a1429

Mazzuchelli, R. D. C., Sossai, B. F., & Araújo, F. D. (2014). Inoculação de Bacillus subtilis e Azospirillum brasilense na cultura do milho. Colloquium Agrariae, 10(2), 40-47, 2014. doi: 10.5747/ca.2014.v10.n2. a106fatcat:yyyuwazsobfbfgv6j5yfejimv4

Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., & Schäffer, A. A. (2008). Database indexing for production MegaBLAST searches. PubMed, 24(16), 1757-64. doi: 10.1093/bioinformática/ btn322

Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 1-16. doi: 10.1007/s11274-017-23 64-9

Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Update world map of the Köppen-Geiger climate classification. Hydrologyand Earth System Science, 11(5), 1633-1644. doi: 10.5194/hess-11-1633-2007

Raasch, L. D., Bonaldo, S. M., & Oliveira, A. A. F. (2013). Bacillus subtilis: enraizamento e crescimento de miniestacas de eucalipto em Sinop, norte de Mato Grosso, Brasil. Bioscience Journal, 29(1), 1446-1457.

Ratz, R. J., Palácio, S. M., Espinoza-Quiñones, F. R., Vicentino, R. C., Michelim, H. J., & Richter, L. M. (2017). Potencial biotecnológico de rizobactérias promotoras de crescimento de plantas no cultivo de milho e soja. Engevista, 19(14), 890-905. doi: 10.22409/engevista.v19i4.894

Saharan, B. S., & Nehra V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Science and Medicine Research, 2011(1), 1-30.

Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y., & Chen, J. (2016). Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. Cucumerinum. Biological Control, 94, 37-46. doi: 10.1016/j.biocontrol.2015.12.001

Satapute, P. P., Olekar, H. S., Shetti, A. A., Kulkarni, A. G., Hiremath, G. B., Patagundi, B. I., Shivsharan, C. T., & Kaliwal, B. B. (2012). Isolation and characterization of nitrogen fixing Bacillus subtilis strain as-4 from agricultural soil. International Journal of Recent Scientific Research, 3(9), 762-765.

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed.

Zeilinger, S., Gruber, S., & Bansal, R. (2016). Secondary metabolism in Trichoderma - chemistry meets genomics. Fungal Biology Reviews, 30(2), 74-90. doi: 10.1016/j.fbr.2016.05.001




DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n4p1769

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional