ACCase inhibitor fractionation and glyphosate addition improve perennial sourgrass control

Guilherme Mendes Pio de Oliveira, Marcelo Augusto de Aguiar e Silva, Giliardi Dalazen

Abstract


Glyphosate-resistant sourgrass is difficult to control, particularly when perennial, and strategies that improve the control efficiency against this grass and preserve the useful life of graminicides are warranted. Therefore, the present study aimed to answer the following questions: (i) Does fractionating the doses of ACCase inhibitors improve the control of perennial sourgrass? (ii) Does alternating the chemical groups cyclohexanediones (DIMs) and aryloxyphenoxypropanoates (FOPs) improve the control of perennial sourgrass, and does the order of their application affect sourgrass control efficiency? (iii) Does the addition of glyphosate to ACCase inhibitors improve to the control of perennial sourgrass resistant to 5-enol-pyruvyl-shiquime-3-phosphate synthase inhibitors? Two field experiments (I and II) were performed in 2018 and repeated in 2019. In experiment I, the treatments included a single or fractional application clethodim + quizalofop-P-ethyl (216 + 108 g a.i. ha-1), clethodim (216 g a.i. ha-1), and quizalofop-P-tefuryl (108 g a.i. ha-1), applied in the order of clethodim followed by quizalofop-P-tefuryl and vice versa, as well as a control treatment. In experiment II, the treatments included a single or fractional application of clethodim + quizalofop-P-ethyl (216 + 108 g a.i. ha-1) and clethodim (108 g a.i. ha-1), isolated or associated with glyphosate, as well as a control treatment. In both experiments, the interval between the fractional applications was 7 days. Percentage of control, number of tillers per plant, and height of sourgrass plants were determined. Compared with the unfractionated application, the fractionation of clethodim + quizalofop-P-ethyl and clethodim increased control by respectively 20-24 and 25-30%. Fractionated clethodim has greate control, and less regrowth and height of the sourgrass plants. The order of application of the chemical groups FOPs and DIMs affected control efficiency, and better results were obtained with the application of quizalofop-P-tefuryl followed by clethodim. The addition of glyphosate potentiates the action of graminicides, particularly when fractionated, even on resistant sourgrass, with a 26% increase in efficiency and resulting in satisfactory control ( > 80%).

Keywords


Clethodim; Digitaria insularis (L.) Fedde; ACCase inhibitors; Quizalofop; Sequential application.

Full Text:

PDF

References


Andrade, A., Tulmann, A., Neto, Tcacenco, F. A., Marschalek, R., Pereira, A., Oliveira, A. M., Neto,... Noldin, J. A. (2018). Development of rice (Oryza sativa) lines resistant to aryloxyphenoxypropionate herbicides through induced mutation with gamma rays. Plant Breeding, 137(3), 364-369. doi: 10.1111/pbr.12592

Beckie, H. J., & Tardif, F. J. (2012). Herbicide cross resistance in weeds. Crop Protection, 35(1), 15-28. doi: 10.1016/j.cropro.2011.12.018

Bromilow, R. H., Chamberlain, K., & Evans, A. A. (1990). Physicochemical aspects of phloem translocation of herbicides. Weed Science, 38(3), 305-314. doi: 10.1017/S0043174500056575

Burton, J. D., Gronwald, J. W., Keith, R. A., Somers, D. A., Gengenbach, B. G., & Wyse, D. L. (1991). Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop. Pesticide Biochemistry and Physiology, 39(2), 100-109. doi: 10.1016/0048-3575(91)90130-E

Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., & Wyse, D. L. (1989). Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pesticide Biochemistry and Physiology, 34(1), 76-85. doi: 10.1016/0048-3575(89)90143-0

Carr, J. E., Davies, L. G., Cobb, A. H., & Pallett, K. E. (1986). Uptake, translocation and metabolism of fluazifop butyl in Setaria viridis. Annals of Applied Biology, 108(1), 115-123. doi: 10.1111/j.1744-7348 .1986.tb01972.x

Cobb, A. H., & Reade, J. P. H. (2010). Herbicides and plant phisiology. London: Wiley.

Fadin, D. A., Tornisielo, V. L, Barroso, A. A. M., Ramos, S., Reis, F. C. dos, & Monquero, P. A. (2018). Absorption and translocation of glyphosate in Spermacoce verticillata and alternative herbicide control. Weed Research, 58(5), 389-396. doi: 10.1111/wre.12329

Fleck, N. G. (1994). Doses reduzidas de herbicidas de pós-emergência para controle de papua em soja. Planta Daninha, 12(1), 21-28. doi: 10.1590/S0100-83581994000100004

Gazola, T., Belapart, D., Castro, E. B., Cipola, M. L., F., & Dias, M. F. (2016). Características biológicas de Digitaria insularis que conferem sua resistência à herbicidas e opções de manejo. Científica, 44(4), 557-567. doi: 10.15361/1984-5529.2016v44n4p557-567

Gilo, E. G., Mendonça, C. G., Santo, T. L. E., & Teodoro, P. E. (2016). Alternatives for chemical management of sourgrass. Bioscience Journal, 32(4), 881-889. doi: 10.14393/BJ-v32n4a2016-32786

Gomes, H. L. L., Sambatti, V. C., & Dalazen, G. (2020). Sourgrass control in response to the association of 2,4-D to Accase inhibitor herbicides. Bioscience Journal, 36(4), 1126-1136. doi: 10.14393/BJ-v36n4a 2020-47895

Gomes, L. J. P., Santos, J. I., Gasparino, E. C., & Correia, N. M. (2017). Chemical control and morphoanatomical analysis of leaves of different populations of sourgrass. Planta Daninha, 35, e017158021. doi: 10.1590/S0100-83582017350100008

Heap, I. (2021). The international survey of herbicide resistant weeds. Retrieved from www.weedscience.com

Heap, I., & Duke, S. O. (2018). Overview of glyphosate resistant weeds worldwide. Pest Management Science, 74(5), 1040-1049. doi: 10.1002/ps.4760

Lancaster, Z. D., Norsworthy, J. K., & Scott, R. C. (2018). Sensitivity of grass crops tolow rates of quizalofop. Weed Technology, 32(3), 304-308. doi: 10.1017/wet.2018.14

Lopes Ovejero, R. F., Takano, H. K., Nicolai, M., Ferreira, A., Melo, M. S. C., Cavenaghi, A. L.,... Oliveira, R. S. (2017). Frequency and dispersal of glyphosate resistant sourgrass (Digitaria insularis) populations across Brazilian agricultural production areas. Weed Science, 65(2), 285-294. doi: 10.1017/wsc.2016.31

Mendonça, G. S., Martins, C. C., Martins, D., & Costa, N. V. (2014). Ecophysiology of seed germination in Digitaria insularis ((L.) Fedde). Revista Ciência Agronômica, 45(4), 823-832. doi: 10.1590/S1806-669 02014000400021

Nandula, V. K., Poston, D. H., Reddy, K. N., & Koger, C. H. (2007). Formulation and adjuvant effects on the absorption and translocation of 14C-clethodim in wheat (Triticum aestivum L.). Weed Biology and Management, 7(4), 226-231. doi: 10.1111/j.1445-6664.2007.00260.x

Powles, S. B., & Yu, Q. (2010). Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 61(1), 317-347. doi: 10.1146/annurev-arplant-042809-112119

R Core Team (2021). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Radwan, D. E. M., & Soltan, D. M. (2012). The negative effects of clethodim in photosynthesis and gas exchange status of maize plants are ameliorated by salicylic acid pretreatment. Photosynthetica, 50(2), 171-179. doi: 10.1007/s11099-012-0016-8

Rendina, A. R., Craig-Kennard, A. C., Beaudoin, J. D., & Breen, M. K. (1990). Inhibition of acetyl-coenzyme A carboxylase by two classes of grass selective herbicides. Journal of Agricultural and Food Chemistry, 38(5), 1282-1287. doi: 10.1021/jf00095a029

Rodrigues, B. N., & Almeida, F. S. (2018). Guia de herbicidas. Londrina: Produção Independente.

Shaner, D. L. (2014). Herbicide handbook. Champaign: Lawrence.

Silva, W. T., Karam, D., Vargas, L., & Silva, A. F. (2017). Alternativas de controle químico para capim amargoso (Digitaria insularis) na cultura do milho. Revista Brasileira de Milho e Sorgo, 16(3), 578-586. doi: 10.18512/1980-6477/rbms.v16n3p578-586

Silveira, H. M., Langaro, A. C., Álcantara-de la Cruz, R., Sediyama, T., & Silva, A. A. (2018). Glyphosate efficacy on sourgrass biotypes with suspected resistance collected in GR-crop fields. Acta Scientiarum Agronomy, 40(1), 69-74. doi: 10.4025/actasciagron.v40i1.35120

Takano, H. K., Melo, M. S. C., Ovejero, R. F. L., Westra, P. H., Gaines, T. A., & Dayan, F. E. (2020). Trp2027Cys mutation evolves in Digitaria insularis with cross resistance to ACCase inhibitors. Pesticide Biochemistry and Physiology, 164(1), 1-6. doi: 10.1016/j.pestbp.2019.12.011

Takano, H. K., Oliveira, R. S., Jr., Constantin, J., Silva, V. F. V., & Mendes, R. R. (2018). Chemical control of glyphosate resistant goosegrass. Planta Daninha, 36, e018176124. doi: 10.1590/S0100-8358201836 0100055

Ye, F., Ma, P., Zhang, Y. Y., Li, P., Yang, F., & Fu, Y. (2018). Herbicidal activity and molecular docking study of novel ACCase inhibitors. Frontiers in Plant Science, 9(1850), 1-10. doi: 10.3389/fpls.2018.018 50




DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n2p657

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional