Hemotropic mycoplasmas in bats from forest fragments, state of Paraná, southern Brazil

Flávia Carolina Meira Collere, Larissa Dantas Roeder Ferrari, Ricardo Nascimento Drozino, Jéssica Damiana Marinho Valente, Paula Fernanda Massini, Flávio Haragushiku Otomura, Max Jean de Ornelas Toledo, Thállitha Samih Wischral Jayme Vieira, Rafael Felipe da Costa Vieira


The order Chiroptera is the second largest group of mammals with bats being identified as reservoir of several viral zoonoses, although, little is known about their role in other groups of pathogens, including hemotropic Mycoplasma spp. To date, hemoplasma species have been found infecting several species of bats with high genetic diversity between 16S rRNA gene sequences. On this study, we aimed to identify the occurrence and characterize 16S and 23S rRNA genes of hemoplasma species in four bats species (Artibeus lituratus, Carollia perspicillata, Sturnira lilium and Sturnira tildae) from forest fragments in Paraná State, southern Brazil, using PCR-based assays. Spleen tissue samples were collected, DNA extracted and further screened by a pan hemoplasma PCR assay. All samples consistently amplified the mammal endogenous gapdh gene. One out of 15 (6.66%; 95% CI: 0.2-31%) bats tested positive for hemotropic Mycoplasma sp. by the PCR assay targeting the 16S rRNA gene. Sequencing of the 16S rRNA gene fragment from the hemoplasma-positive bat showed 99.14% identity with hemotropic Mycoplasma sp. detected in Sturnira parvidens from Belize. Sequencing of the 23S rRNA gene fragment from the hemoplasma-positive bat showed 86.17% identity with Candidatus Mycoplasma haemosphiggurus’ detected in orange spined hairy dwarf porcupines (Sphiggurus villosus) from Southern Brazil.


Bats; Hemotropic mycoplasmas; Hemoplasmas; Mycoplasma sp.

Full Text:



Alabí A. S., Monti G., Otth C., Sepulveda-García P., Sánchez-Hidalgo M., de Mello V. V. C., et al. (2020) Molecular Survey and Genetic Diversity of Hemoplasmas in Rodents from Chile. Microorganisms, 8(10): 1493.

Becker D. J., Speer K. A., Brown A. M., Fenton M. B., Washburne A. D., Altizer S., et al. (2020) Ecological and evolutionary drivers of haemoplasma infection and bacterial genotype sharing in a Neotropical bat community. Mol Ecol., 29: 1534–1549.

Birkenheuer A.J., Levy M.G., & Breitschwerdt E.B. (2003) Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J Clin Microbiol., 41(9): 4172–4177.

Brook C.E., Dobson A.P. (2014) Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23: 172-180.

Darriba D, Taboada G. L., Doallo R., Posada D. (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9: 772.

Descloux E, Mediannikov O, Gourinat A, Colot J, Chauvet M, Mermoud I, et al. (2020) Flying fox haemolytic fever, description of a new zoonosis caused by “Candidatus Mycoplasma haemohominis”. Clin Infect Dis., ciaa1648.

Di Cataldo S, Kamani J, Cevidanes A, Msheliza E.G., & Millán J. Hemotropic mycoplasmas in bats captured near human settlements in Nigeria. (2020) Comp Immunol Microbiol Infect Dis., 70: 101448.

Drummond A. J., Suchard M. A., Xie D., Rambaut A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Bio and Evol., 29: 1969-1973.

Hoelzle K., Winkler M., Kramer M. M, Wittenbrink M. M., Dieckmann S. M., & Hoelzle L.E. (2011) Detection of Candidatus Mycoplasma haemobos in cattle with anaemia. Vet J,187(3): 408–410.

Ikeda P, Seki M, Carrasco A, Rudiak L, Miranda J, Gonçalves S.M.M., et al. (2017) Evidence and molecular characterization of Bartonella spp. and hemoplasmas in neotropical bats in Brazil. Epidemiol Infect., 145(10): 2038-2052.

Katoh K, Standley D. M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Bio Evol., 30: 772-780.

Machado C.A.L., Vidotto O., Conrado F.O., Santos N.J.R., Valente J.D.M., Barbosa I.C., et al. (2017) Mycoplasma ovis infection in goat farms from northeastern Brazil. Comp Immunol Microbiol Infect Dis., 55:1-5.

Mascarelli P.E., Keel M.K., Last L.A., Breitschwerdt E.B., Maggi R.G. (2014) Hemotropic mycoplasmas in little brown bats (Myotis lucifugus). Parasit Vectors, 7(1): 117.

Millán J, López-Roig M, Delicado V, Serra-Cobo J, & Esperón F. (2015) Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to “Candidatus Mycoplasma hemohominis”. Comp Immunol Microbiol Infect Dis., 39: 9–12.

Millán J., Di Cataldo S., Volokhov D.V., Becker D.J. (2020) Worldwide occurrence of haemoplasmas in wildlife: Insights into the patterns of infection, transmission, pathology and zoonotic potential. Transbound Emerg Dis., 00: 1–21.

Mongruel A.C.B., Spanhol V. C., Valente J.D.M., Porto P.P., Ogawa L., Otomura F., et al. Survey of vector-borne and nematode parasites involved in the etiology of anemic syndrome in sheep from Southern Brazil. Rev Bras Parasitol Vet., 29(3): e007320.

Rambaut A. (2014) FigTree v1.4.5, a graphical viewer of phylogenetic trees. Available on: http://tree.bio.ed.ac.uk/software/figtree/

Reis N.R., Peracchi A.L., Batista C.B., de Lima I.P., Pereira A.D. (2017) História Natural dos morcegos brasileiros: chave de identificação de espécies. Technical Books. 1st ed. Rio de Janeiro.. p. 480.

Santos L.C., Vidotto O, Santos N.J.R., Ribeiro J., Pellizzaro M., Santos A.P., et al. (2020) Hemotropic mycoplasmas (hemoplasmas) in free-ranging bats from Southern Brazil. Comp Immunol Microbiol Infect Dis., 69: 101416.

Sela I, Ashkenazy H, Katoh K, Pupko T. (2012) Guidance 2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res., 43: 7-14.

Schipper J, Chanson J.S., Chiozza F, Cox N.A., Hoffmann M, Katariya V, et al. (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science, 322: 255–230.

Volokhov D.V., Becker D.J., Bergner L.M., Camus M.S., Orton R.J., Chizhikov V.E., et al. (2017) Novel hemotropic mycoplasmas are widespread and genetically diverse in vampire bats. Epidemiol Infect., 145(15): 3154-3167.

DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n1p431

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional