Multivariate analysis to characterize flaxseed production environments in Brazil

Carla Eloize Carducci, Leosane Cristina Bosco, Vanderleia Schoeninger, Fábio Satoshi Higashikawa, Rafael Costa Ferreira, Joyce Castro Xavier

Abstract


The environments for flaxseed production and its soil-plant-atmosphere relationship, it is essential for distinguish and adapt them to the soil and crop management to obtain high sustainable yields and food diversification. Our goal was to characterize the main edaphoclimatic conditions for flaxseed production in South-Central, Brazil. The experiments were carried out in two locations representative of the edaphoclimatic conditions of South-Central, Brazil: 1 - Dourados, MS, with an Aw climate and LATOSSOLO VERMELHO Distroférrico (Haplustox) and 2 - Curitibanos, SC, with a Cfb climate and CAMBISSOLO HÚMICO (Haplumbrept), both cultivated with four flaxseed varieties: Aguará and Caburé from Argentina, UFSC (reddish-brown color) and Golden (golden-yellow color) from Brazil, grown under no-tillage system and few resources. Data from weather (air temperature and rainfall), plant growth, soil chemical and physical-hydric attributes, and post-harvest quality of flaxseed were monitored. The data were submitted to Pearson’s correlation matrix (P < 0.05) and multivariate principal component analysis (PCA). PCA segregated edaphoclimatic environments and varieties into four distinct groups. Each edaphoclimatic condition there was specific attributes discriminated by PCA ( > 78%). The lowest plant height ( < 0.85m), shorter cycle length (120-142 days) and high yield ( =1.13 Mg ha-1), especially golden-yellow flaxseed, were found in Dourados. The soil organic carbon and rainfall acted directly in Curitibanos, while charge balance and air temperature responded in Dourados influence flaxseed production. Soil physical and grain attributes were similar between the environments investigated. Both agricultural environments showed feasibility for flaxseed sustainable production in Brazil, it is important to emphasize that these results are pioneers, especially the edaphoclimatic conditions from Dourados.

Keywords


Agroecosystem; Edaphoclimate condition; Linun usitatissimum L.; Principal components; Sustainable production.

Full Text:

PDF

References


Addinsoft (2014). Xlstat-Pro, core statistical software. Retrieved from http://www.xlstat.com

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes, J. L. G. de, & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/201 3/0507

Bechlin, T. R., Granella, S. J., Christ, D., Coelho, S. R. M., & Viecelli, C. A. (2019). Evaluation of grain and oil quality of packaged and ozonized flaxseed. Journal of Stored Products Research, 83(4), 311-316. doi: 10.1016/j.jspr.2019.07.014

Bosco, L. C., Becker, D., Stanck, L. T., Carducci, C. E., & Harthmann, O. E. L. (2020). Linking meteorological conditions to linseed productivity and phenology in agroecosystems of Southern Brazil. Brazilian Journal of Development, 6(5), 24838-24868. doi: 10.34117/bjdv6n5-077

Carducci, C. E., Bosco, L. C., Kohn, L. S., Barbosa, J. S., Regazolli, G. H. M., & Benevenute, P. A. N. (2017). Water dynamics in Humic Cambisol under linseed tillage in the Santa Catarina Plateau. Scientia Agraria, 18(1), 1-11. doi: 10.5380/rsa.v18i1.49885

Carducci, C. E., Schoeninger, V., Xavier, J. C., Ferreira, R. C., & Freitas, K. G. (2018). Soil and seed quality of flax grown in a conservation management system. Cadernos de Agroecologia, 13(2), 1-10. Recuperado de http://cadernos.aba-agroecologia.org.br/index.php/cadernos/article/view/2020

Casa, R., Russell, G., Cascio, B. L., & Rossini, F. (1999). Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. European Journal of Agronomy, 11(3-4), 267-278. doi: 10.1016/S1161-0301(99)00037-4

Chen, Y. L., Zhang, Z. S., Zhao, Y., Hu, Y. G., & Zhang, D. H. (2018). Soil carbon storage along a 46-year revetation chronosequence in a desert are of northern China. Geoderma, 325(17), 28-36. doi: 10.10116 /j.geoderma.2018.03.024




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n6SUPL2p3685

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional