Physiological and biochemical responses of mini watermelon irrigated with brackish water under two types of irrigation system

Laís Monique Gomes do Ó, Alide Mitsue Watanabe Cova, André Dias de Azevedo Neto, Neilon Duarte da Silva, Petterson Costa Conceição Silva, Rogério Ferreira Ribas, Andressa Leite Santos, Hans Raj Gheyi

Abstract


The use of marginal quality water can be a viable alternative in regions with water scarcity when associated with an adequate irrigation management strategy. The aim of this study was to evaluate the physiological and biochemical responses of ‘Sugar Baby’ mini watermelon as a function of irrigation management and salinity of the nutrient solution (ECsol). The experiment was carried out in a greenhouse of the Federal University of Recôncavo of Bahia, in the municipality of Cruz das Almas - BA, in a completely randomized design, with four replications. The plants were grown under two types of irrigation management (conventional drip - CD and pulse - PD) and four saline levels of the fertigation nutrient solution (2.5 - control; 4.5; 5.5; 6.5 dS m-1). At 65 days after cultivation, the following variables were evaluated: chlorophyll a and b content, chlorophyll a fluorescence, and organic and inorganic solutes content. The treatments did not influence the levels of chlorophyll a and b. Salinity decreased the quantum yield of photochemical energy conversion due to the increased quantum yield of unregulated energy loss. Irrigation management and water salinity did not affect carbohydrate content in mini watermelons leaves. However, soluble proteins were higher in the CD than in PD and decreased with increasing salinity in both managements. Salinity increased free amino acids in CD but did not change the content of these solutes in PD. Free proline was only influenced by the management system and was higher in CD than in PD. Sodium, chloride, and sodium to potassium ratio increased with ECsol, but these increases were more pronounced in PD. Salinity increased potassium content in PD and reduced in CD. The CD led to lower absorption of toxic ions, reducing the effects of salinity on the mini watermelon.

Keywords


Citrullus lanatus L.; Salt stress; Irrigation management.

Full Text:

PDF

References


Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop requirements. FAO.

Almeida, W. F. D., Lima, L. A., & Pereira, G. M. (2015). Drip pulses and soil mulching effect on American Cripshead lettuce yield. Engenharia Agrícola, 35(6), 1009-1018. doi: 10.1590/1809-4430-Eng.Agric.v35 n6p1009-1018/2015

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/ 0507

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156(1), 64-77. doi: 10.1016/j.plaphy.2020.08.042

Arriero, S. S., Almeida, W. F., Paz, V. P. S., & Damasceno, L. F. (2020). Yield of eggplant using low quality water and pulse drip irrigation. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(12), 822-826. doi: 10.1590/1807-1929/agriambi.v24n12p822-826

Ayers, R. S., & Westcot, D. W. (1999). A qualidade de água na agricultura. (2a ed). Campina Grande.

Bai, X., Dai, L., Sun, H., Chen, M., & Sun, Y. (2019). Effects of moderate soil salinity on osmotic adjustment and energy strategy in soybean under drought stress. Plant Physiology and Biochemistry, 139(1), 307-313. doi: 10.1016/j.plaphy.2019.03.029

Barbosa, M. R., Jr., Holanda Costa, R., Santos, S. B. T. dos, Silva, T. R. G., Santos, M. A. L., & Brito, A. L., F. (2020). A comparative study of the conventional drip system and by pulses in pepper yield. Brazilian Journal of Development, 6(6), 35866-35880. doi: 10.34117/bjdv6n6-212

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi: 10.1007/BF00018060

Batista-Silva, W., Heinemann, B., Rugen, N., Nunes-Nesi, A., Araújo, W. L., Braun, H. P., & Hildebrandt, T. M. (2019). The role of amino acid metabolism during abiotic stress release. Plant, Cell & Environment, 42(5), 1630-1644. doi: 10.1111/pce.13518

Betzen, B. M., Smart, C. M., Maricle, K. L., & Maricle, B. R. (2019). Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species. Transactions of the Kansas Academy of Science, 122(1-2), 49-58. doi: 10.1660/062.122.0105

Blanco, F. F., & Folegatti, M. V. (2002). Salt accumulation and distribution in a greenhouse soil as affected by salinity of irrigation water and leaching management. Revista Brasileira de Engenharia Agrícola e Ambiental, 6(3), 414-419. doi: 10.1590/S1415-43662002000300006

Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(7), 246-254. doi: 10.1006/abio. 1976.9999

Cova, A. M. W., Azevedo, A. D., Neto, Silva, P. C. C., Menezes, R. V., Ribas, R. F., & Gheyi, H. R. (2020). Physiological and biochemical responses and fruit production of noni (Morinda citrifolia L.) plants irrigated with brackish water. Scientia Horticulturae, 260(1), 108852. doi: 10.1016/j.scienta.2019.108852

D’Amelia, L., Dell’Aversana, E., Woodrow, P., Ciarmiello, L. F., & Carillo, P. (2018). Metabolomics for crop improvement against salinity stress. In V. Kumar, S., Wani, P. Suprasanna, & L. S. Tran (Eds.), Salinity responses and tolerance in plants (pp. 267-287). Berlin.

Dias, A. S., Lima, G. S. de, Gheyi, H. R., Furtado, G. de F., Soares, L. A. dos A., Nobre, R. G., Moreira, R. C. L., & Fernandes, P. D. (2021). Chloroplast pigments and photochemical efficiency of West Indian cherry under salt stress and potassium-phosphorus fertilization. Semina: Ciências Agrárias, 42(1), 87-104. doi: 10.5433/1679-0359.2021v42n1p87

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. doi: 10.1021/ac601 11a017

Dutra, J. G., Peil, R. M. N., Duarte, T. S., Rombaldi, C. V., Grolli, P. R., Pereira, A. S., & Dorneles, A. O. S. (2021). Fruit production and quality of mini-watermelon with different number of stems, in troughs cultivation system and substrate reuse. Semina: Ciências Agrárias, 42(2), 471-486. doi: 10.5433/1679-03 59.2021v42n2p471

El-Abedin, T. Z. (2006). Effect of pulse drip irrigation on soil moisture distribution and maize production in clay soil. New Trends in Agricultural Engineering, 23(1), 1032-1050. http://www.mjae.eg.net/pdf/2 006/ nov/19.pdf

Eskling, M., Arvidsson, P. O., & Akerlund, H. E. (1997). The xanthophyll cycle, its regulation and components. Physiologia Plantarum, 100(1), 806-816. doi: 10.1111/j.1399-3054.1997.tb00007.x

Faithfull, N. T. (2002). Methods in agricultural chemical analysis: a practical handbook. Wallingford.

Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450

Gaines, T. P., Parker, M. B., & Gascho, G. J. (1984). Automated determination of chlorides in soil and plant tissue by sodium nitrate. Agronomy Journal, 76(1), 371-374. doi: 10.2134/agronj1984.00021962007600 030005x

Galdino, A. G. da S., Silva, T. I. da, Silva, J. de S., & Silva, C. L. da. (2018). Amino acid content as adaptative responses of millet (Pennisetum glaucum) at water and saline stress. Revista Desafios, 5(1), 93-98. doi: 10.36560/1262019976

Gondim, F. A., Gomes, E., F., Marques, E. C., & Prisco, J. T. (2011). Effects of H2O2 on the growth and solutes accumulation in maize plants under salt stress. Revista Ciências Agronômicas, 42(2), 373-381. doi: 10.1 590/S1806-66902011000200016

Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi: 10.1146/annurev.pp.31.060180.001053

Guimarães, S. O., Costa, A. A., Vasconcelos, F. das C. J. R., Silva, E. M., Sales, D. C., Araújo, L. M. J. R., & Souza, S. G. (2016). Projeções de mudanças climáticas sobre o nordeste brasileiro dos modelos do CMIP5 e do CORDEX. Revista Brasileira de Meteorologia, 31(3), 337-365. doi: 10.1590/0102-7786313201501 50

Hortifruitbrasil (2020). Anuário 2019 - 2020 - Retrospectiva 2019 e perspectiva 2020. https://www.hfbrasil.org.br/br/revista/acessar/completo/anuario-2019-2020-retrospectiva-2019-perspectivas-2020-dos-hf-s.aspx

Jones, J. B., Jr. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC Press.

Klughammer, C., & Schreiber, U. (2008) Complementary PSII quantum yield calculated from simple fluorescence 355 parameters measured by PAM fluorometry and saturation pulse method. PAM Application Notes, 1(1), 27-35. https://www.walz.com/files/downloads/pan/PAN07001_ed2.pdf

Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New fluorescence parameters for the determination of QA redox stat and excitation energy fluxes. Photosynthesis Research, 79, 209-218. doi: 10.1023/B:PRES.0000015391.99477.0d

Loay, A. A., & El-Ezz, S. F. A. (2021). Performance of “Flame seedless” grapevines grown on different rootstocks in response to soil salinity stress. Scientia Horticulturae, 275(1), 109704. doi: 10.1016/j. scienta.2020.109704

Mastrogiannidou. E., Chatzissavvidis, C., Antonopoulou, C., Tsabardoukas, V., Giannakoula, A., & Therios, I. (2016). Response of pomegranate cv. Wonderful plants to salinity. Journal of Soil Science and Plant Nutrition, 16(3), 621-636. doi: 10.4067/S0718-95162016005000032

Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180(1), 118-125. doi: 10.1016/j.agwat.2016.11.005

Menezes, R. V., Azevedo, A. D., Neto, Ribeiro, M. O., & Cova, A. M. W. (2017). Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesquisa Agropecuária Tropical, 47(1), 22-30. doi: 10.1590/1983-40632016v4742580

Ó, L. M. G., Cova, A. M. W., Gheyi, H. R., Silva, N. D., & Azevedo, A. D., Neto. (2020a) Production and quality of mini watermelon under drip irrigation with brackish water. Revista Caatinga, 33(3), 766-774. doi: 10.1590/1983-21252020v33n320rc

Ó, L. M. G., Cova, A. M. W., Gheyi, H. R., Silva, N. D., Azevedo Neto, A. D., & Ribas, R. F. (2021). Aspectos bioquímicos e fluorescência da clorofila a em plantas de minimelancia hidropônica sob estresse salino. Irriga, 26(2), 221-239. doi: 10.15809/irriga.2021v26n2p221-239

Ó, L. M. G., Cova, A. M. W., Silva, N. D., Silva, P. C. C., Gheyi, H. R., & Azevedo, A. D., Neto. (2020b). Crescimento inicial de minimelancia cv. Sugar baby irrigada com águas salobras. Revista Brasileira de Agricultura Irrigada, 14(3), 4086-4096. doi:10.7127/rbai.v14n101168

Oliveira, W. J., Souza, E. R., Santos, H. R. B., Silva, E. F. F., Duarte, H. H. F., & Melo, V. M. (2018). Fluorescência da clorofila como indicador de estresse salino em feijão caupi. Revista Brasileira de Agricultura Irrigada, 12(3), 2592-2603. doi: 10.7127/rbai.v12n300700

Pérez-Bueno, M. L., Pineda, M., & Barón, M. (2019). Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science, 10(1), 1135. doi: 10.3389/fpls.2019.01135

Rank, P. H., & Vishnu, B. (2021). Pulse drip irrigation: a review. Journal of Pharmacognosy and Phytochemistry, 10(1), 125-130. https://www.phytojournal.com/archives/2021/vol10issue1/PartB/9-5-544-506.pdf

Ribeiro, J. E. S., Sousa, L. V., Silva, T. I., Nobrega, J., Figueiredo, F. R. A., Bruno, R., Dias, T. J., & Albuquerque, M. B. (2020). Citrullus lanatus morphophysiological responses to the combination of salicylic acid and salinity stress. Revista Brasileira de Ciência Agrária, 15(1), e6638. doi: 10.5039/ agraria.v15i1a6638

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington.

Rodrigues, V. dos S., Bezerra, F. M. L., Sousa, G. G. de, Fiusa, J. N., Leite, K. N., & Viana, T. V. de A. (2019). Yield of maize crop irrigated with saline waters. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(2), 101-105. doi: 10.1590/1807-1929/agriambi.v24n2p101-105

Sá, F. V., Gheyi, H. R., Lima, G. S., Paiva, E. P., Silva, L. A., Moreira, R. C. L., & Dias, A. S. (2019). Ecophysiology of West Indian cherry irrigated with saline water under phosphorus and nitrogen doses. Bioscience Journal, 35(1), 211-221. doi: 10.14393/BJ-v35n1a2019-41742

Sasaki, J. L.S. (1992). Hidroponia. Anais da Semana da Agronomia, Ilha Solteira, SP, Brasil, 9.

Schreiber, V., Bilger, W., & Neubauer, C. (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In E. D. Schulze, & M. M. Caldwell (Eds.), Ecophysiology of photosynthesis (pp. 49-70). Berlim: Springer.

Shoukat, E., Abideen, Z., Ahmeda, M. Z., Gulzara, S., & Nielsen, B. L. (2019). Changes in growth and photosynthesis linked with intensity and duration of salinity in Phragmites karka. Environmental and Experimental Botany, 162(1), 504-514. doi: 10.1016/j.envexpbot.2019.03.024.

Silva, E. G., Jr., Silva, A. F., Lima, J. S., Silva, M. F. C., & Maia, J. M. (2017). Vegetative development and content of calcium, potassium, and sodium in watermelon under salinity stress on organic substrates. Pesquisa Agropecuária Brasileira, 5(12), 1149-1157. doi: 10.1590/s0100-204x2017001200003.

Silva, F. D. A., Pereira, F. H. F., Campos, J. E., Jr., Nobrega, J. S., & Dias, M. S. (2020). Aplicação foliar de prolina no crescimento e fisiologia do milho verde cultivado em solo salinizado. Colloquium Agrariae, 16(5), 23-34. doi: 10.5747/ca.2020.v16.n5.a392

Silva, R. R., Santos, I. M. S., Oliveira, G. M., Carvalho, A. R. P., Santos. P. P., Jr., & Gonçalves, I. S. (2015). Evapotranspiração e coeficiente de cultura para melancia. Revista Brasileira de Agricultura Irrigada, 9(6), 392-399. doi: 10.7127/RBAI.V9N600325

Silveira, J. A. G., Silva, S. L. F., & Silva, E. N. (2016). Mecanismo biomoleculares envolvidos com a resistência ao estresse salino em plantas. In H. R. Gheyi, N. S. Dias, C. F. Lacerda, & E. G. F. Gomes (Eds.), Manejo da salinidade na agricultura: estudos básicos e aplicados (pp. 181- 197). Fortaleza, CE

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi: 10.1093/aob/mcu239

Sousa, A. B. O., Duarte, S. N., Sousa, O. N., Neto., Souza, A. C. M., Sampaio, P. R. F., & Dias, C. T. F. (2016). Production and quality of mini watermelon cv. Smile irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(10), 897-902. doi: 10.1590/1807-1929/agriambi.v20n10p897-902

Taiz, L., Zeiger, E., Myller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. ARTMED.

Wang, P., Li, X., Tian, L., Gu, Z., & Yang, R. (2018). Low salinity promotes the growth of broccoli sprouts by regulating hormonal homeostasis and photosynthesis. Horticulture Environment and Biotechnology, 60(1), 19-30. doi: 10.1007/s13580-018-0095-y

Xu, H., Lu, Y., & Tong, S. (2018). Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emirates Journal of Food and Agriculture, 30(3), 199-204. doi: 10.9755/ejfa. 2018.v30.i3.1642

Yemm, E. W., & Cocking, E. C. (1955). The determination of amino acids with ninhydrin. Analyst, 80(1), 209-213. doi: 10.1039/an9558000209

Zamora, V. R. O., Silva, M. M., Santos, J. A., Jr., Silva, G. F., Dimas Menezes, D., & Almeida, C. D. G. C. (2021). Assessing the productivity of coriander under different irrigation depths and fertilizers applied with continuous and pulsed drip systems. Water Supply, 21(5), 2099-2108. doi: 10.2166/ws.2021.008

Zamora, V. R. O., Silva, M. M., Silva, G. F., Santos, J. A., Jr., Dimas Menezes, D., & Menezes, S. M. (2019). Gotejamento por pulsos e lâminas de fertirrigação nas relações hídricas do coentro. Horticultura Brasileira, 37(1), 22-28. doi: 10.1590/s0102-053620190103




DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n4p1497

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional