Evaluation of fecal smear methods for research on Cryptosporidium spp. oocysts in the feces of dairy calves

Ana Paula Molinari Candeias, Gabrieli Maria Huff, Adriana Fiorini Rosado, André Luis Vriesman Beninca, Laura Zanella Souza, Silvia Cristina Osaki, Nelson Luis Mello Fernandes

Abstract


The objective of this study is to compare the direct fecal smear (DFS) and centrifugal sedimentation (CS) methods in the detection of Cryptosporidium spp. oocysts in fecal samples of dairy calves. One hundred and fourteen fecal samples were collected from calves aged up to six months from 10 dairy farms located in Palotina and Francisco Alves, Paraná, Brazil. The microscopic analysis revealed the presence of Cryptosporidium spp. oocysts in 51.75% (59/114) of the samples in both methods. In CS, 48.25% (55/114) of the samples were positive, while in DFS slides, only 6.14% (7/114) were positive. Only 4 samples were positive exclusively in DFS. To ensure that there were no false-negative results in the microscopic analysis, the 55 samples that were negative in both DFS and CS were selected for molecular analysis using the nested PCR (nPCR). Of these 55 samples, 24% (13/55) were positive and forwarded for sequencing part of the genome, which made it possible to identify C. parvum, C. bovis and C. ryanae. Besides the characterization of the Cryptosporidium species, it was possible to identify bacteria of the genus Acinetobacter interfering directly in the analyzed samples. The microscopic analysis also revealed higher sensitivity when CS was used to make the fecal smears. However, some samples that were negative in this technique had positive PCR results. Thus, molecular analysis is indicated to confirm cases of Cryptosporidium spp. Further studies are necessary to prove the specificities of the used primers since the results obtained in nPCR were positive for the protozoan but, when genetic sequencing was performed, Acinetobacter spp. was identified.

Keywords


Nested PCR; Oocysts; Protozoan; Ziehl-Neeslsen.

Full Text:

PDF

References


Abdelsalam, I. M., Sarhan, R. M., & Hanafy, M. A. (2017). The impact of different copro-preservation conditions on molecular detection of Cryptosporidium Species. Iranian Journal for Parasitology, 12(2), 274-283.

Abubakar, I. I., Tillmann, T., & Banerjee, A. (2013). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 385(9963), 117-171. doi: 10.1016/s0140-6736(14)61682-2

Björkman, C., Lindström, L., Oweson, C., Ahola, H., Troell, K., & Axén, C. (2018). Cryptosporidium infections in suckler herd beef calves. Parasitology, 142(8), 1108-1114. doi: 10.1017/S0031182015000 426

Bowman, D. D. (2010). Diagnóstico parasitológico. In D. D. Bowman (Ed.), Parasitologia veterinária de Georgis (9a ed., pp. 279-351). São Paulo: Saunders-Elsevier.

Cai, M., Guo, Y., Pan, B., Li, N., Wang, X., Tang, C., Xiao L. (2017). Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Veterinary Parasitology, 241(1), 14-19. doi: 10.1016/j.vetpar.2017.05.005

Chagas, A. C. S. (2015). Diarreia em bezerros leiteiros lactantes: a doença e o manejo em diferentes unidades da EMBRAPA. São Carlos: EMBRAPA Pecuária Sudeste-Documentos (INFOTECA-E). Recuperado de https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1035039/1/Documentos120.pdf

Fayer, R. (2010). Taxonomy and species delimitation in Cryptosporidium. Experimental Parasitology, 124(1), 90-97. doi: 10.1016/j.exppara.2009.03.005

Fayer, R., Santin, M., & Trout, J. M. (2007). Prevalence of Cryptosporidium species and genotypes in mature dairy cattle on farms in eastern United States compared with younger cattle from the same locations. Veterinary Parasitology, 145(3-4), 260-266. doi: 10.1016/j.vetpar.2006.12.009

Fereig, R. M., Abdelbaky, H. H., Ihara, F., & Nishikawa, Y. (2018). Development and evaluation of the first immunochromatographic test that can detect specific antibodies against Cryptosporidium parvum. Acta Tropica, 185(1), 349-356. doi: 10.1016/j.actatropica.2018.06.019

Li, N., Wang, R., Cai, M., Jiang, W., Feng, Y., & Xiao, L. (2019). Outbreak of cryptosporidiosis due to Cryptosporidium parvum subtype IIdA19G1 in neonatal calves on a dairy farm in China. International Journal for Parasitology, 49(7), 569-577. doi: 10.1016/j.ijpara.2019.02.006

Liao, C., Wang, T., Koehler, A. V., Fan, Y., Hu, M., & Gasser, R. B. (2018). Molecular investigation of Cryptosporidium in farmed chickens in Hubei Province, China, identifies ‘zoonotic’ subtypes of C. meleagridis. Parasites & Vectors, 11(1), 484. doi: 10.1186/s13071-018-3056-5

Liu, A., Gong, B., Liu, X., Shen, Y., & Wu, Y. (2020). A retrospective epidemiological analysis of human Cryptosporidium infection in China during the past three decades (1987-2018). PLOS Neglected Tropical Diseases, 14(3), e0008146. doi: 10.1371/journal.pntd.0008146

Mammeri, M., Chevillot, A., Chenafi, I., Thomas, M., Julien, C., Vallée, I.,… Adjou, K.T. (2019). Molecular characterization of Cryptosporidium isolates from diarrheal dairy calves in France. Veterinary Parasitology: Regional Studies and Reports, 18(1),100323. doi: 10.1016/j.vprsr.2019.100323

Matos, L. V. S. de, Silveira, L. da Neto, Oliveira, B. C. M., Makatu, M. Y., Pierucci, J. C., Viol, M. A., Bresciani, K. D. S. (2019). Molecular characterization of Cryptosporidium in calves from rural settlements in the Northwest region of the state of São Paulo, Brazil. Semina: Ciências Agrárias, 40(1), 491-496. doi: 10.5433/1679-0359.2019v40n1p491

Miambo, R. D., Laitela, B., Malatji, M. P., Santana Afonso, S. M. de, Júnior, A. P., Lindh, J., & Mukaratirwa, S. (2019). Prevalence of Giardia and Cryptosporidium in young livestock and dogs in Magude District of Maputo Province, Mozambique. Onderstepoort Journal of Veterinary Research, 86(1), e1-e6. doi: 10.4102/ojvr. v86i1.1709

Ortolani, E. L. (2000). Standardization of the modified Ziehl-Neelsen technique to stain oocysts of Cryptosporidium sp. Brazilian journal of Veterinary Parasitology, 9(1), 29-31.

Osaki, S. C., Soccol, V. T., Costa, A. O., Oliveira-Silva, M. B., Pereira, J. T., & Procopio, A. E. (2013). Polymerase chain reaction and nested-PCR approaches for detecting Cryptosporidium in water catchments of water treatment plants in Curitiba, State of Paraná, Brazil. Journal of the Brazilian Society of Tropical Medicine, 46(3), 270-276. doi: 10.1590/0037-8682-0053-2013

Ouakli, N., Belkhiri, A., Lucio, A. de, Köster, P. C., Djoudi, M., Dadda, A., Carmena, D. (2018). Cryptosporidium-associated diarrhoea in neonatal calves in Algeria. Veterinary Parasitology Regional Studies and Reports, 12(1), 78-84. doi: 10.1016/j.vprsr.2018.02.005

Rahman, M., Uddin, M., Sultana, R., Moue, A., & Setu, M. (2013). Polymerase chain reaction (PCR): a short review. Anwer Khan Modern Medical College Journal, 4(1), 30-36. doi: 10.3329/akmmcj.v4i1.13682

Razakandrainibe, R., Diawara, E. H. I., Costa, D., Le Goff, L., Lemeteil, D., Ballet, J. J., Favennec, L. (2018). Common occurrence of Cryptosporidium hominis in asymptomatic and symptomatic calves in France. PLoS Neglected Tropical Diseases, 12(3), e0006355. doi: 10.1371/journal.pntd.0006355

Reif, J. S., Wimmer, L., Smith, J. A., Dargatz, D. A., & Cheney, J. M. (1989). Human cryptosporidiosis associated with an epizootic in calves. American Journal of Public Health, 79(11), 1528-1530. doi: 10.2105/ajph.79.11.1528

Rigo, C. R., & Franco, R. M. (2002). Comparison between the modified Ziehl-Neelsen and Acid-Fast-Trichrome methods for fecal screening of Cryptosporidium parvum and Isospora belli. Journal of the Brazilian Society of Tropical Medicine, 35(3), 209-214. doi: 10.1590/s0037-86822002000300002

Robertson, L. J., Björkman, C., Axén, C., & Fayer, R. (2014). Cryptosporidiosis in Farmed Animals. In S. M. Cacciò, & G. Widmer (Eds.), Cryptosporidium: Parasite and Disease (pp. 149-235). Springer, Viena. doi: 10.1007/978-3-7091-1562-6_4. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC71 22230/pdf/978-3-7091-1562-6_Chapter_4.pdf

Robertson, L. J., Johansen, Ø. H., Kifleyohannes, T., Efunshile, A. M., & Terefe, G. (2020). Cryptosporidium infections in Africa how important is zoonotic transmission? A review of the evidence. Frontiers in Veterinary Science, 7(1), 724. doi: 10.3389/fvets.2020.575881

Roy, S. L., DeLong, S. M., Stenzel, S. A., Shiferaw, B., Roberts, J. M., Khalakdina, A., Beach, M. J. (2004). Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. Journal of Clinical Microbiology, 42(7), 2944-2951. doi: 10.1128/JCM.42.7.2944-2951. 2004

Ryan, U., Fayer, R., & Xiao, L. (2014). Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology, 141(13), 1667-1685. doi: 10.1017/S0031182014001085

Santín, M., Trout, J. M., & Fayer, R. (2008). A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Veterinary Parasitology, 155(1-2), 15-23. doi: 10.1016/j.vetpar.2008.04.018




DOI: http://dx.doi.org/10.5433/1679-0359.2022v43n2p585

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional