Application of abscisic acid (S-ABA) at different stages of ripening on color development of ‘Rubi’ table grape

Luana Tainá Machado Ribeiro, Maíra Tiaki Higuchi, Aline Cristina de Aguiar, Gabriel Danilo Shimizu, Leandro Simões Azeredo Gonçalves, Sergio Ruffo Roberto


The color of the berries is an important aspect of the quality of table grapes and crucial for marketing. The ‘Rubi’ table grapes grown in the subtropical climate generally lack color intensity due to the inhibition of anthocyanins by high temperatures during ripening. The exogenous application of abscisic acid (S-ABA) can be used to overcome this problem as the accumulation of anthocyanins in the berry skin is regulated by this plant growth regulator. The objective of this study was to assess the effect of the exogenous application of S-ABA at different stages of ripening on color development in ‘Rubi’ table grapes using the soluble solids (SS) content as a marker of ripening. The study was conducted during two seasons in commercial vineyards. The first trial was conducted in Marialva, Parana, Brazil, during the 2019 summer season crop (harvest in December). S-ABA (400 mg L-1) was exogenously applied at different stages of ripening of ‘Rubi’ table grapes (determined by the SS content of the berries): control (without application); SS = 8-9 ºBrix; SS = 10-11 ºBrix; SS = 8-9 ºBrix (two applications; the second one applied 10 days after the first); and SS = 10-11 ºBrix (two applications; the second one applied 10 days after the first). The second trial was conducted in Cambira, Parana, Brazil, during the 2020 off-season crop (harvest in May). S-ABA (400 mg L-1) was exogenously applied at different stages of ripening of Rubi grapes: control (without application); SS = 6-7 ºBrix; SS = 7-8 ºBrix; SS = 9-10 ºBrix; SS = 6-7 ºBrix (two applications; the second one applied 14 days after the first); SS = 7-8 ºBrix (two applications; the second one applied 14 days after the first); and SS = 9-10 ºBrix (two applications; the second one applied 14 days after the first). A randomized block design was used as the statistical model with four replications, and each plot consisted of one vine. The variables analyzed were total anthocyanin contents, color index (CIRG), and color attributes (L*, C*, h°, and deltaE) of berry skin. The total anthocyanin accumulation and color attributes of the berries were evaluated every 10 and 7 days after the first application of S-ABA until harvest in the first and second trials, respectively, and the other variables were evaluated at harvest. In the summer-season crop, when the SS content was 8-11 ºBrix, the application of S-ABA increased the concentration of the total anthocyanins 4 times compared to that in the control, improving berry color development. Furthermore, in the off-season crop, when the SS content was 6-10 ºBrix, the application of S-ABA increased the concentration of total anthocyanins 2-3 times compared to that in the control, improving the color attributes of berries. In both crops, a single application of the plant growth regulator was sufficient to intensify the color of the berries.


Total anthocyanin content; Color; Plant growth regulator.;Vitis vinifera L.

Full Text:



Abe, L. T., Mota, R. V., Lajolo, F. M., & Genovese, M. I. (2007). Compostos fenólicos e capacidade antioxidante de uvas Vitis labrusca e Vitis vinifera L. Revista Ciência e Tecnologia de Alimentos, 27(2), 394-400. doi: 10.1590/S0101-20612007000200032

Cantín, C. M., Fidelibus, M. W., & Crisosto, C. H. (2007). Application of abscisic acid (ABA) at véraison advanced red color develop kment and maintained postharvest quality of ‘Crimson Seedless’ grapes. Revista Postharvest Biology and Technology, 46(3), 237-241. doi: 10.1016/j.postharvbio.2007.05.017

Carreño, J., Martínez, A., Almela, L., & Fernández-López, J. A. (1995). Proposal of an index for the objective evaluation of the color of red table grapes. Revista Food Research International, 28(4), 373-377. doi: 10.1016/0963-9969(95)00008-A

Carreño, J., Martínez, A., Almela, L., & Fernández-López, J. A. (1996). Measuring the color of table grapes. Revista Color Research & Application, 21(1), 50-54. doi: 10.1002/(SICI)1520-6378(199602)21:1<50:: AID-COL5>3.0.CO;2-4

Carvalho, C., Kist, B. B., & Beling, R. R. (2019). Anuário brasileiro de horti & fruti. Santa Cruz do Sul: Gazeta.

Caviglione, J. H., Kiihl, L. R. B., Caramori, P. H., & Oliveira, D. (2000). Cartas climáticas do Paraná. Londrina: IAPAR.

Coombe, B. G., & Hale, C. R. (1973). The hormone content of ripening grape berries and the effects of growth substances treatments. Plant Physiology, 51(4), 629-634. doi: 10.1104/pp.51.4.629

Domingues, F. J., Neto, Pimentel, A. Jr., Borges, C. V., Cunha, S. R., Callili, D., Lima, G. P. P.,... Tecchio, M. T. (2017). The exogenous application of abscisic acid induce accumulation of anthocyanins and phenolic compounds of the ‘Rubi’Grape. American Journal of Plant Sciences, 8(10), 2422-2432. doi: 10.4236/ajps.2017.810164

Ferrara, G., Mazzeo, A., Matarrese, A. M. S., Pacucci, C., Punzi, R., Faccia, M.,... Gambacorta, G. (2015). Application of abscisic acid (S-ABA) and sucrose to improve color, anthocyanin content and antioxidant activity of cv. Crimson Seedless grape berries. Australian Journal of Grape and Wine Research, 21(1), 18-29. doi: 10.1111/ajgw.12112

Francis, F. J. (2000). Anthocyanins and betalains: compositions and applications. Cereal Foods World, 45(5), 208-213.

Gambetta, G. A., Matthews, M. A., Shaghasi, T. H., Mcelrone, A. J., & Castellarin, S. D. (2010). Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 232(1), 219-234. doi: 10.1007/s00425-010-1165-2

Giribaldi, M., Hartung, W., & Schubert, A. (2010). The effects of abscisic acid on grape berry ripening are affected by the timing of treatment. Journal International des Sciences de la Vigne et du Vin, 44(Special Issue), 9-15.

Instituto Brasileiro de Geografia e Estatística (2021). Tabela 1618: área plantada, área colhida e produção, por ano da safra e produto das lavouras. Rio de Janeiro: IBGE. Recuperado de tabela/1618

Jackson, R. S. (2008). Wine science: principles and applications (3nd ed.). Amsterdam: Elsevier.

Jia, H. F., Chai, Y. M., Li, C. L., Lu, D., Luo, J. J., & Qin, L. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 157(1), 188-199. doi: 10.1104/pp.111.177 311

Keller, M. (2015). The science of grapevines: anatomy and physiology (2nd ed.). Amsterdam: Elsevier Academic Press.

Kishino, A. Y., Caramori, P. H., Roberto, S. R., & Ricce, W. S. (2019a). Fatores climáticos e o desenvolvimento da videira. In A. Y. Kishino, S. L. C. Carvalho, & S. R. Roberto (Eds.), Viticultura tropical: o sistema de produção de uva de mesa do Paraná (pp. 118-123). Londrina: IAPAR.

Kishino, A. Y., Marur, C. J., & Roberto, S. R. (2019b). Características da planta. Videira ideal. In A. Y. Kishino, S. L. C. Carvalho, & S. R. Roberto, Viticultura tropical: o sistema de produção de uva de mesa do Paraná (pp. 187-192; 208-209). Londrina: IAPAR.

Koyama, K., Sadamatsu, K., & Yamamoto, N. G. (2010). Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Functional and Integrative Genomics, 10(3), 367-381. doi: 10.1007/s10142-009-0145-8

Koyama, R., Assis, A. M., Yamamoto, L. Y., Borges, W. F., Borges, R. S., Prudêncio, S. H., & Roberto, S. R. (2014). Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from ‘Isabel’ grapes (Vitis labrusca L.). HortScience, 49(4), 460-464. doi: 10.21273/HORTSCI.49.4.460

Koyama, R., Colombo, R. C., Borges, W. F. S., Silvestre, J. P., Hussain, I., Shahab, M.,… Roberto, S. R. (2019). Abscisic acid application affects color and acceptance of the new hybrid ‘BRS Melodia’ seedless grape grown in a subtropical region. HortScience, 54(6), 1055-1060. doi: 10.21273/HORTSCI1 3872-19

Lancaster, J. E., Lister, C. E., Reay, P. F. Y., & Triggs, C. M. (1997). Influence of pigment composition on skin color in a wide range of fruits and vegetables. Journal of American Society of Horticultural Science, 122(4), 594-598. doi: 10.21273/JASHS.122.4.594

Leão, P. C. de S., Lima, M. A. C., Costa, J. P. D., & Trindade, D. C. G. (2015). Abscisic acid and ethephon for improving red color and quality of Crimson seedless grapes grown in a tropical region. American Journal of Enology and Viticulture, 66(1), 37-45. doi: 10.5344 / ajev.2014.14041

Liang, Z., Yang, C., Yang, J., Wu, B., Wang, L., Cheng, J., & Li, S. (2009). Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica, 167(1), 113-125. doi: 10.1007/s10142-009-0145-8

Lima, V. L. A. G. de, Melo, E. de A., & Guerra, N. B. (2007). Correlação entre o teor de antocianinas e caracterização cromática de polpas de diferentes genótipos de aceroleira. Brazilian Journal of Food Technology, 10(1), 51-55.

Lucas, M., Jeremias, P. F. P. T., Andreaus, J., Barcellos, O., Química, D., Blumenau, U. R.,... Peralta-Zamora, P. (2008). Reutilização de efluente de tingimentos de fibras acrílicas pós-tratamento foto-eletroquímico. Quimica Nova, 31(6), 1362-1366. doi: 10.1590/S0100-40422008000600017

Machado, T. F., Monteiro, E. R., & Tiecher, A. (2019). Estabilidade química, físico-química e antioxidante de polpa de Physalis pasteurizada e não pasteurizada sob congelamento. Brazilian Journal of Food Technology, 22, e2017149, doi: 10.1590/1981-6723.14917

Mascarenhas, R. D. J., Guerra, N. B., Aquino, J. D. S., & Leão, P. C. D. S. (2013). Qualidade sensorial e físico-química de uvas finas de mesa cultivadas no submédio São Francisco. Revista Brasileira de Fruticultura, 35(2), 546-554. doi: 10.1590/S0100-29452013000200025

Mattiuz, B. H., Miguel, A. C. A., Galati, V. C., & Nachtigal, J. C. (2009). Effect of stored temperature in minimally processed seedless table grapes. Revista Brasileira de Fruticultura, 31(1), 44-52. doi: 10.15 90/S0100-29452009000100008

Nachtigal, J. C., Camargo, U. A., & Maia, J. D. G. (2005). Sistema de produção de uva de mesa no norte do Paraná: implantação do vinhedo. Bento Gonçalves: EMBRAPA Uva e Vinho.

Olivares, D., Contreras, C., Muñoz, V., Rivera, S., González-Agüero, M., Retamales, J., & Defilippi, B. G. (2017). Relationship among color development, anthocyanin and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose. Plant Physiology and Biochemistry, 115, 286-297. doi: 10.1016/j.plaphy.2017.04.007

Orak, H. H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111(3), 235-241. doi: 10.10 16/j.scienta.2006.10.019

Owen, S. J., Lafond, M. D., Bowen, P., Bogdanoff, C., Usher, K., & Abrams, S. R. (2009). Profiles of abscisic acid and its catabolites in developing Merlot grape (Vitis vinifera) berries. American Journal of Enology and Viticulture, 60(3), 277-284.

Peppi, M. C., Fidelibus, M. W., & Dokgozlian, N. K. (2006). Abscisic acid application timing and concentration affect firmness, pigmentation and color of ‘Flame Seedless’ grapes. HortScience, 41(6), 1449-1445. doi: 10.21273/HORTSCI.41.6.1440

Peppi, M. C., Fidelibus, M. W., & Dokoozlian, N. K. (2007). Application timing and concentration of abscisic acid affect the quality of ‘Red globe’ grapes. The Journal of Horticultural Science and Biotechnology, 82(2), 304-310. doi: 10.1080/14620316.2007.11512233

Peppi, M. C., Fidelibus, M. W., & Dokoozlian, N. K. (2008). Timing and concentration of abscisic acid applications affect the quality of ‘Crimson Seedless’ grapes. International Journal of Fruit Science, 7(4), 71-83. doi: 10.1080/15538360802003324

Piva, C. R., Lopez G. J. L., & Morgan, W. (2006). The ideal table grapes for the Spanish market. Revista Brasileira de Fruticultura, 28(2), 258-261. doi: 10.1590/S0100-29452006000200023

R Core Team (2020). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from

Rastija, V., Srecnik, G., & Saric, M. (2009). Polyphenolic composition of Croatian wines with different geographical origins. Food Chemistry, 115(1), 54-60. doi: 10.1016/j.foodchem.2008.11.071

Ribéreau-Gayón, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of enology: the chemistry of wine. Stabilization and treatments. John Wiley & Sons, 2, 450. doi: 10.1002/0470010398. ch6

Ribichaud, J. L., & Noble, A. C. (1990). Astringency and bitterness of selected phenolic in wines. Journal of the Science of Food and Agriculture, 53(3), 343-353. doi: 10.1002/jsfa.2740530307

Roberto, S. R., Assis, A. M. de, Yamamoto, L. Y., Koyama, R., Sato, A. J., & Borges, R. S. de. (2013). Ethephon use and application timing of abscisic acid for improving color of ‘Rubi’ table grape. Pesquisa Agropecuária Brasileira, 48(7), 797-800. doi: 10.1590/S0100-204X2013000700013

Roberto, S. R., Assis, A. M. de, Yamamoto, L. Y., Miotto, L. C. V., Sato, A. J., Koyama, R., & Genta, W. (2012). Application timing and concentration of abscisic acid improve color of ‘Benitaka’ table grape. Scientia Horticulturae, 142, 44-48. doi: 10.1016/j.scienta.2012.04.028

Robinson, S. P., & Davies, C. (2000). Molecular biology of grape berry ripening. Australian Journal of Grape and Wine Research, 6(2), 175-188. doi: 10.1111/j.1755-0238.2000.tb00177.x

Ryu, S., Han, J. H., Cho, J. G., Jeong, J. H., Lee, S. K., & Lee, H. J. (2020). High temperature at véraison inhibits anthocyanin biosynthesis in berry skins during ripening in ‘Kyoho’ grapevines. Plant Physiology and Biochemistry, 157, 219-228. doi: 10.1016/j.plaphy.2020.10.024

Shahab, M., Roberto, S. R., Ahmed, S., Colombo, R. C., Silvestre, J. P., Koyama, R., & Souza, R. T. (2019). Anthocyanin accumulation and color development of ‘Benitaka’ table grape subjected to exogenous abscisic acid application at different timings of ripening. Agronomy, 9(4), 164. doi: 10.3390/agronomy 9040164

Siewers, V., Kokkelink, L., Smedsgaard, J., & Tudzynski, P. (2006). Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Applied and Environmental Microbiology, 72(7), 4619-4626. doi: 10.1128/AEM.02919-05

Souza, R. T., Roberto, S. R., Koyama, R., & Shahab, M. (2020). Uso de reguladores vegetais para intensificar e distribuir a cor de uvas de mesa cultivadas em regiões subtropicais. (Circular Técnica, INFOTECA-E). Bento Gonçalves: EMBRAPA Uva e Vinho.

Tarara, J., Lee, J., Spayd, S., & Scagel, S. (2008). Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. American Journal of Enology and Viticulture, 59(3), 235-247.

Tecchio, M. A., Domingues, F. J. Neto, Pimentel., A.,Jr. Silva, M. J. R. da, Roberto, S. R., & Smarsi, R. C. (2017). Improvement of color and increase in anthocyanin content of ‘Niágara Rosada’ grapes with application of abscisic acid. African Journal of Biotechnology, 16(25), 1400-1403. doi: 10.5897/AJB 2017.16073

Villalobos-González, L., Peña-Neira, A., Ibáñez, F., & Pastenes, C. (2016). Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content. Plant Physiology and Biochemistry, 105(1), 213-223. doi: 10.1016/j.plaphy.2016.04.012

Wildman, R. E. C. (2016). Handbook of nutraceuticals and functional foods (2nd ed.). New York, London: CRC Press Tylor and Francis Group.

Yamamoto, L. Y., Koyama, R., Assis, A. M. de, Borges, W. F. S., Oliveira, I. R. de, & Roberto, S. R. (2015). Color of berry and juice of 'Isabel' grape treated with abscisic acid in different ripening stages. Pesquisa Agropecuária Brasileira, 50(12), 1160-1167. doi: 10.1590/S0100-204X2015001200005

Yang, F. W., & Feng, X. Q. (2015). Abscisic acid biosynthesis and catabolism and their regulation roles in fruit ripening. Phyton, 84(2), 444-453. doi: 10.32604/phyton.2015.84.444

Zanus, M. C. (2015). Panorama da vitivinicultura brasileira. Bento Gonçalves: EMBRAPA. Recuperado de


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional