Yield and nutritional value of biomass sorghum (BRS 716) managed in different row spacing and maturity at harvest in the semiarid region of Brazil

Ícaro Daniel Alves dos Santos Souza, Vicente Ribeiro Rocha Júnior, Flávio Pinto Monção, Rafael Augusto da Costa Parrella, Matheus Wilson Silva Cordeiro, Cinara da Cunha Siqueira Carvalho, João Paulo Sampaio Rigueira, Ignacio Aspiazú, Fredson Vieira e Silva, Nelson de Abreu Delvaux Júnior


The objective was to evaluate the structural, yield and nutritional characteristics of biomass sorghum BRS 716 managed in different row planting spacing and harvest age in a semiarid region of Brazil. Three row spacing (45, 70 and 90 cm; plots) and four maturity at harvest (70, 100, 130 and 160 days; subplots) were evaluated following a randomized block design in a 3 x 4 split plot arrangement, with eight blocks. The useful area was 3 x 15 m. Variation in soil fertility in the area was the blocking factor. There was interaction between row spacing and maturity at harvest (P < 0.05) on plant height (P = 0.01), dry matter yield (DMY; P < 0.01) and proportion of senescent material (P = 0.01). The DMY observed at the age of 160 days and spacing of 90 cm was 41.40% higher than the DMY at the same age and in spacings of 45 and 70 cm (mean of 21.45 t/ha). As the maturity at harvest increased, there was a reduction in the crude protein content (P < 0.01), potential degradability (P < 0.01) and effective degradability (P < 0.01) of dry matter, and the content of non-fiber carbohydrates (P < 0.01), total digestible nutrients (P < 0.01) and the readily soluble fraction (P < 0.01) of the dry matter increased. Considering the yield and nutritional characteristics of biomass sorghum BRS 716 managed in the semiarid region for silage production, the row spacing of 90 cm and the maturity at harvest of 160 days after planting are recommended.


Dry matter yield; Height; Ruminal kinetics; Sorghum bicolor.

Full Text:



Agricultural and Food Research Council (1993). Energy and protein requirements of ruminants. Walligford: CAB International.

Almeida, L. G. F., Parrella, R. A. da C., Simeone, M. L. F., Ribeiro, P. C. de O., Santos, A. S. dos, Costa, A. S. V.,... Schaffert, R. E. (2019). Composition and growth of sorghum biomass genotypes for ethanol production. Biomass and Bioenergy, 122(1), 343-348. doi: 10.1016/j.biombioe.2019.01.030

Amelework, B., Shimelis, H., Tongoona, P., Mark Laing, M., & Mengistu, F. (2015). Genetic variation in lowland sorghum (Sorghum bicolor (L.) Moench) landraces assessed by simple sequence repeats. Plant Genetic Resources, 13(2), 131-141. doi: 10.1017/S1479262114000744

Antunes, F. Z. (1994). Caracterização climática. Informe Agropecuário, 17(139), 15-19.

Bernardes, T. F., Daniel, J. L. P., Adesogan, A. T., McAllister, T. A., Drouin, P., Nussio, L. G.,... Cai, Y., (2018). Silage review: unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 101(5), 4001-4019. doi: 10.3168/jds.2017-13703

Borges, L. D. A., Rocha, V. R., Jr., Monção, F. P., Soares, C., Silva, F. V., Rigueira, J. P. S.,... Rabelo, W. O. (2019). Nutritional and productive parameters of Holstein/Zebu cows fed diets containing cactus pear. Asian-Australasian Journal of Animal Sciences, 32(9), 1373-1380. doi: 10.5713/ajas.18.0584

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E., (2018). Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. doi: 10. 3168/jds.2017-13909

Castro, F. M. R., Bruzi, A. T., Nunes, J. A. R., Parrella, R. A. C., Lombardi, G. M. R., Albuquerque, C. J. B., & Lopes, M. (2015). Agronomic and energetic potential of biomass sorghum genotypes. American Journal of Plant Sciences, 6(6), 1862-1873. doi: 10.4236/ajps.2015.611187

Companhia Nacional de Abastecimento (2020). Acompanhamento da safra brasileira, grãos. Recuperado de https://www.conab.gov.br/

Detmann, E., Souza, M. A., Valadares, S. C., Fº., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S.,... Azevedo, J. A. G., (2012). Methods for food analysis. Visconde do Rio Branco: Suprema.

Food and Agriculture Organization of the United Nations (2020). Countries by commodity- Sorghum. Retrieved from http://www.fao.org/faostat/en/#rankings/countries_by_commodity

Grant, R. J., & Ferraretto, L. F. (2018). Silage review: silage feeding management: Silage characteristics and dairy cow feeding behavior. Journal of Dairy Science, 101(5), 4111-4121. doi: 10.3168/jds.2017-13729

Instituto Nacional de Metereologia (2020). Estações e dados/dados metereológicos. Recuperado de http:// www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas

Köppen, W. (1948). Climatologia: Con un estudio de los climas de la tierra. México: Fondo de Cultura Econômica.

Kung, L., Jr., Shaver, R. D., Grant, R. J., & Schmidt, R. J., (2018). Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(1), 4020-4033. doi: 10.3168/jds.2017-13909.

Leal, D. B., Monção, F. P., Rocha, V. R., Jr., Carvalho, C. C. S., Alencar, A. M. S., Moura, M. M. A.,... Rigueira, J. P. S. (2020). Correlações entre as características produtivas e nutricionais do capim-BRS capiaçu manejado na região semiárida. Brazilian Journal of Development, 6(4), 18951-18960. doi: 10. 34117/bjdv6n4-168

May, A., Souza, V. F., Gravina, G. A., & Fernandes, P. G., (2016). Plant population and row spacing on biomass sorghum yield performance. Ciência Rural, 46(3), 434-439. doi: 10.1590/0103-8478cr201411 33.

McCaughey, W. P., Therrien, M. C., & Mabon, R., (1996). Forage sorghum in southern Manitoba. Canadian Journal of Plant Science, 76(1), 123-125. doi: 10.4141/cjps96-019.

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage (2nd ed.). Marlow: Chalcombe Publications.

Mertens, D. R., & Loften, J. R. (1980). The effects of starch on forage fiber digestion kinetics in vitro. Journal of Dairy Science, 63(9), 1437-1446. doi: 10.3168/jds.S0022-0302(80)83101-8

Monção, F. P., Costa, M. A. M. S., Rigueira, J. P. S., Moura, M. M. A., Rocha, V. R., Jr., Mesquita, V. G.,... Chamone, J. M. A. (2019). Yield and nutritional value of BRS capiaçu grass at different regrowth ages. Semina: Ciências Agrárias, 41(5), 745-755. doi: 10.5433/1679-0359.2019v40n5p2045

Monção, F. P., Costa, M. A. M. S., Rigueira, J. P. S., Sales, E. C. J., Leal, D. B., Silva, M. F. P.,... Rocha, V. R., Jr. (2020). Productivity and nutritional value of BRS capiaçu grass (Pennisetum purpureum) managed at four regrowth ages in a semiarid region. Tropical Animal Health and Production, 52(1), 235-241. doi: 10.1007/s11250-019-02012-y

Muck, R. E., Nadeau, M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L., Jr. (2018). Silage review: recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980-4000. doi: 10.3168/jds.2017-13839

Mwamahonje, A., & Maseta, Z. (2018). Evaluation of yield performance of sorghum (Sorghum bicolor L. Moench) varieties in Central Tanzania. International Journal of Agronomy and Agricultural Research, 13(1), 8-14.

National Research Council (2001). Nutrient requirements of dairy cattle (7nd rev. ed.). Washington, DC: National Academies Press.

Nocek, J. E. (1988). In situ and other methods to estimate ruminal protein and energy digestibility: a review. Journal of Dairy Science, 71(8), 2051-2069. doi: 10.3168/jds.S0022-0302(88)79781-7

Ørskov, E. R., & Mcdonald, I. (1979). The estimation of degradability in the rumen form incubation measurement weighted according to rate of passage. Journal of Agricultural Science, 92(2), 499-508. doi: 10.1017/S0021859600063048

Paradhipta, D. H. V., Joo, Y. H., Lee, H. J., Lee, S. S., Kim, D. H., Kim, J. D., & Kim, S. C. (2019). Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudan grass silage. Journal of Applied Animal Research, 47(1), 486-491. doi: 10.1080/09712119.2019. 1670667

Parrella, R. A. C., Rodrigues, J. A. S., Tardin, F. D., Damasceno, C. M. B., & Schaffert, R. E. (2010). Desenvolvimento de híbridos de sorgo sensíveis ao fotoperíodo visando alta produtividade de biomassa. (Boletim de Pesquisa e Desenvolvimento, n. 28). Sete Lagoas, MG: EMBRAPA Milho e Sorgo.

Perazzo, A. F., Carvalho, G. G. P., Santos, E. M., Bezerra, H. F. C., Silva, T. C., Pereira, G. A.,... Rodrigues, J. A. S. (2017). Agronomic evaluation of sorghum hybrids for silage production cultivated in semiarid conditions. Frontiers in Plant Science, 8(1), 1-8. doi: 10.3389/fpls.2017.01088

Qu, H., Liu, X. B., Dong, C. F., Lu, X. Y., & Shen, Y. X. (2014). Field performance and nutritive value of sweet sorghum in eastern China. Field Crops Research, 157(1), 84-88. doi: 10.1016/j.fcr.2013.12.010.

Queiroz, F. E., Rocha, V. R., Jr., Monção, F. P., Rigueira, J. P. S., Parrella, R. A. C., Rufino, L. D. A.,... Cordeiro, M. W. S. (2021). Effect of row spacing and maturity at harvest on the fermentative profile, aerobic stability, and nutritional characteristics of biomass sorghum (BRS 716) silage in the semiarid region of Brazil. Revista Brasileira de Zootecnia, 50(1), e20200254. doi: 10.37496/rbz5020200254

Rakshit, S., Ganapathy, K. N., Gomashe, S. S., Dhandapani, A., Swapna, M., & Mehtre, S. P. (2016). Analysis of Indian post-rainy sorghum multi-location trial data reveals complexity of genotype × environment interaction. Journal of Agricultural Science, 1(1), 1-16. doi: 10.1017/S0021859616000137

Ramos, J. C. P., Rocha, V. R., Jr., Monção, F. P., Parrela, R. A. C., Caxito, A. M., Cordeiro, M. W. S.,... Pires, D.A.A. (2021). Effect of replacing forage sorghum silage with biomass sorghum silage in diets for F1 Holstein × Zebu lactating cows. Tropical Animal Health and Production, 53(1), 1-12. doi: 10.10 07/s11250-020-02503-3

Rigueira, J. P. S., Jesus, N. G., Rocha, V. R., Jr., Monção, F. P., Costa, N. M., David, G. S. S.,... Carvalho, C. C. S. (2021). Effects of different banana crop wastes on nutrient intake and digestibility, microbial protein synthesis, feeding behavior, and animal performance of ¾ Holstein × Zebu heifers in a semiarid rangeland. Tropical Animal Health and Production, 53(1), 1-13. doi: 10.1007/s11250-021-02660-z

Statistical Analysis System Institute (2008). SAS/Stat 9.2 Users guide. Cary, NC, USA: SAS Institute, Inc.

Shukla, S., Felderhoff, T. J., Saballos, A., & Vermerris, W. (2017). The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Research, 203(1), 181-191. doi: 10.1016/j.fcr.2016.12.004

Valente, T. N. P., Detmann, E., Queiroz, A. C., Valadares, S. C., Fº., Gomes, D. I ., & Filgueiras, J. F. (2011). Evaluation of rumen degradation profiles of forages using bags made from different textiles. Revista Brasileira de Zootecnia, 40(11), 2565-2573. doi: 10.1590/S1516-35982011001100039

Waldo, D. R., Smith, L. W., & Cox, L. E. (1972). Model of cellulose disappearance from the rumen. Journal of Dairy Science, 55(1), 125-129. doi: 10.3168/jds.S0022-0302(72)85442-0

Worede, F., Mamo, M., Assefa, S., Gebremariam, T., & Beze, Y. (2020). Yield stability and adaptability of lowland sorghum (Sorghum bicolor (L.) Moench) in moisture-deficit areas of Northeast Ethiopia. Cogent Food & Agriculture, 6(1), 1736865. doi: 10.1080/23311932.2020.1736865

DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n6p3463

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional