Organic carbon mineralization of the biochar and organic compost of poultry litter in an Argisol

Gilvanise Alves Tito, Josely Dantas Fernandes, Lucia Helena Garófalo Chaves, Hugo Orlando Carvallo Guerra, Edilma Rodrigues Bento Dantas

Abstract


The dynamics of the organic residues added to the soil are closely related to its mineralization rate. Therefore, the present study aimed to evaluate the organic carbon mineralization in soil samples incubated with different doses of biochar and organic compost from poultry litter. Carbon mineralization was evaluated experimentally by measuring the C-CO2 liberated by incubating 200 g of soil mixed with different doses 0, 5, 10, 15, and 20 t ha-1 of both biochar and organic compost for 61 days. The soil microbial activity, and consequently the carbon mineralization, increased with the application of doses of biochar and organic compost from the poultry litter. The highest C-CO2 mineralization was observed in the treatments that received organic compost. The carbon mineralization process followed chemical kinetics with two simultaneous reactions. The greatest amount of released and accumulated C-CO2 was observed in the soil incubated with 15 and 20 t ha-1 of organic compost from the poultry litter. The doses of biochar did not influence the content of mineralized carbon; this behavior was not verified with the use of this compost, whose highest content corresponded to 85.69 mg kg-1, applying 20 t ha-1.

Keywords


Organic substrate; Microbial activity; C-CO2; Chemical kinetics.

Full Text:

PDF

References


Andrade, C. A., Bibar, M. P. S., Coscione, A. R., Pires A. M. M., & Soares, Á. G. (2015). Mineralização e efeitos de biocarvão de cama de frango sobre a capacidade de troca catiônica do solo. Pesquisa Agropecuária Brasileira, 50(5), 407-416. doi: 10.1590/S0100-204X2015000500008

Andrade, C. A., Oliveira, C., & Cerri, C. C. (2006). Cinética de degradação da matéria orgânica de biossólidos após aplicação no solo e relação com a composição química inicial. Bragantia, 65(4), 659668. doi: 10.1590/S000687052006000400017

Araújo, M. D. M., Feitosa, M. M., Primo, A. A., Taniguchi, C. A. K., & Souza, H. A. (2020). Mineralization of nitrogen and carbon from organic compost from animal production waste. Revista Caatinga, 33(2), 310-320. doi: 10.1590/1983-21252020v33n204rc

Boesch, D. F., Brinsfield, R. B., & Magnien, R. E. (2001). Chesapeake bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal Environmental Quality, 30(2), 303-320. doi: 10.2134/jeq2001.302303x

Bramble, D. S. E., Gouveia, G. A., & Ramnarine, R. (2019). Organic Residues and Ammonium Effects on CO2 Emissions and Soil Quality Indicators in Limed Acid Tropical Soils. Soil Systems, 3(16), 1-15. doi: 10.3390/soilsystems3010016

Bruun, S., & El-Zehery, T. (2012). Biochar effect on the mineralization of soil organic matter. Pesquisa Agropecuária Brasileira, 47(5), 665-671. doi: 10.1590/S0100-204X2012000500005

Bruun, S., Jensen, E. S., & Jensen, L. S. (2008). Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration. Organic Geochemistry, 39(7), 839-845. doi: 10.1016/j. orggeochem.2008.04.020

Capuani, S., Rigon, J. P. G., Beltrão, N. E. M., & Brito, J. F., Neto. (2012). Atividade microbiana em solos, influenciada por resíduos de algodão e torta de mamona. Revista Brasileira de Engenharia Agricola e Ambiental, 16(12), 1269-1274. doi: 10.1590/S1415-43662012001200002

Chee-Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I., Maxwell, S., Lin, Y., & Aminov, R. I. (2009). Fate and transport of antibiotic residues and antibiotic resistance genetic determinants during manure storage, treatment, and land application. Journal of Environmental Quality, 38(3), 1086-1108. doi: 10.2134/jeq 2008.0128

Corrêa, J. C., & Miele, M. (2011). A cama de aves e os aspectos agronômicos, ambientais e econômicos. In J. C. P. Palhares, & A. Kunz (Eds.), Manejo ambiental na avicultura (pp. 125-152). (Documentos, 149). Concórdia: EMBRAPA Suínos e Aves. Recuperado de http://ainfo.cnptia.embrapa.br/digital/bitstream/ item/57059/1/a-cama-de-aves-e-os-aspcteos.pdf

Cross, A., & Sohi, S. P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology and Biochemistry, 43(10), 2127-2134. doi: 10.1016/ j.soilbio.2011.06.016

Dalólio, F. S., Silva, J. N., Baêta, F. C., Tinôco, I. F. F., & Carneiro, A. C. O. (2017). Cama de frango e resíduo moveleiro: alternativa energética para a zona da mata mineira. Revista Engenharia na Agricultura, 25(3), 261-271. doi: 10.13083/reveng.v25i3.734

Dodor, D. E., Amanor, Y. J., Asamoah-Bediako, A., Maccarthy, D. S., & Dovie, D. B. K. (2019). Kinetics of carbon mineralization and sequestration of sole and/or co-amended biochar and cattle manure in a sandy soil. Communications in Soil Science and Plant Analysis, 50(20), 2593-2609. doi: 10.1080/00103624. 2019.1671443

Fernandes, J. D., Chaves, L. H. G., Mendes, J. S., Chaves, I. B., & Tito, G. A. (2018). Soil chemical amendments and the macronutrients mobility evaluation in oxisol treated with biochar. Journal of Agricultural Science, 10(10), 238-247. doi: 10.5539/jas.v10n10p238

Fernández, J. M., Nieto, M. A., López-De-Sá, E. G., Gascó, G., Méndez, A., & Plaza, C. (2014). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of the Total Environment, 482-483(1), 1-7. doi: 10.1016/j.scitotenv.2014.02. 103

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. doi: 10.1016/j.cej.2009.09.013

Guo, M., Tongtavee, N., & Labreveux, M. (2009). Nutrient dynamics of field-weathered Delmarva poultry litter: implications for land application. Biology and Fertility of Soils, 45(8), 829-838. doi: 10.1007/s00 374-009-0397-4

Hopkins, D. W. (2008). Carbon mineralization. In M. R. Carter, & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2a ed., pp. 621-626). Boca Raton: CRC Press.

Jeffery, L. S., Coliins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology & Biochemistry, 42(12), 2345-2347. doi: 10.1016/j.soilbio.2010.09.013

Khalil, M. I., Rosenani, A. B., Van Cleemput, O., Boeckx, P., Shamahuddin, J., & Fauziah, C. I. (2002). Nitrous oxide production from an Ultisol of the humid tropics treated with different nitrogen sources and moisture regimes. Biology and Fertility of Soils, 36(1), 59-65. doi: 10.1007/s00374-002-0505-1

Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70(3), 229-236. doi: 10.1016/j.soilbio.2013.12.021




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n6p3167

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional