Effects of glutamine and glutamate on nursery piglets fed diets with different digestible lysine content

Maykelly da Silva Gomes, Dante Teixeira Valente Júnior, Francisco Carlos de Oliveira Silva, Ronaldo Lopes Cunha Júnior, Valdir Ribeiro Junior, Alysson Saraiva, Gabriel Cipriano Rocha


The objective of the study was to evaluate the effects of glutamine and glutamate (Gln / Glu) on the growth performance and immune response of nursery pigs fed different digestible lysine content. Two hundred and sixteen piglets, weaned at 21 days old, were assigned to a randomized block design according to their initial body weight (BW), in a 2 × 2 factorial arrangement with two levels of lysine (control-lys and low-lys) and two levels of Gln / Glu (0 and 12 g kg -1), with nine replicates.


Glutamine; Glutamate; Lysine; Nutrition; Piglets

Full Text:



Ball, M. E. E., Magowan, E., McCracken, K. J., Beattie, V. E., Bradford, R., Gordon, F. J., & Henry, W. (2013). The effect of level of crude protein and available lysine on finishing pig performance, nitrogen balance and nutrient digestibility. Asian-Australasian Journal of Animal Sciences, 26(4), 564-572. doi: 10.5713/ajas.2012.12177

Boisen, S. (1997). Ideal protein—and its suitability to characterize protein quality in pig feeds. A review. Acta Agriculturae Scandinavica, Section A. Animal Science, 47(1), 31–38. https://doi.org/10.1080/09064709709362367

Burrin, D. G., & Stoll, B. (2009). Metabolic fate and function of dietary glutamate in the gut. The American journal of clinical nutrition, 90(3), 850S-856S. doi: 10.3945/ajcn.2009.27462Y

Cabrera, R. A., Usry, J. L., Arrellano, C., Nogueira, E. T., Kutschenko, M., Moeser, A. J., & Odle, J. (2013). Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre- and post-weaning growth performance and intestinal health of piglets. Journal of Animal Science and Biotechnology, 4(1), 29. doi:10.1186/2049-1891-4-29

Duan, J., Yin, J., Ren, W., Liu, T., Cui, Z., Huang, X & Wu, G. (2016). Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids, 48(1), 53-64. doi: https://doi.org/10.1007/s00726-015-2065-3

Fang, L. H., Jin, Y. H., Do, S. H., Hong, J. S., Kim, B. O., Han, T. H., & Kim, Y. Y. (2019). Effects of dietary energy and crude protein levels on growth performance, blood profiles, and nutrient digestibility in weaning pigs. Asian-Australasian journal of animal sciences, 32(4), 556-563. doi: 10.5713/ajas.18.0294

Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. (2017). Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 25(10), 851–873. https://doi.org/10.1016/j.tim.2017.05.004

Halas, V., & Nochta, I. (2012). Mannan Oligosaccharides in Nursery Pig Nutrition and Their Potential Mode of Action. Animals, 2(2), 261–274. https://doi.org/10.3390/ani2020261

He, J., Feng, G. D., Ao, X., Li, Y. F., Qian, H. X., Liu, J. B., & He, Z. Z. (2016). Effects of L-glutamine on growth performance, antioxidant ability, immunity and expression of genes related to intestinal health in weanling pigs. Livestock Science, 189, 102–109. https://doi.org/10.1016/j.livsci.2016.05.009

Hou, Y., & Wu, G. L (2018). Glutamate nutrition and metabolism in swine. Amino Acids, 50, 1497–1510. https://doi.org/10.1007/s00726-018-2634-3

James, L. A., Lunn, P. G., & Elia, M. (1998). Glutamine metabolism in the gastrointestinal tract of the rat assessed by the relative activities of glutaminase and glutamine synthetase. British Journal of Nutrition, 79, 365–372. doi: https://doi.org/10.1079/BJN19980061

Ji, F. J., Wang, L. X., Yang, H. S., Hu, A., & Yin, Y. L. (2019). Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal, 1–9. doi: https://doi.org/10.1017/S1751731119001800

Johnson, J. S., & Lay, D. C. (2017). Evaluating the behavior, growth performance, immune parameters, and intestinal morphology of weaned piglets after simulated transport and heat stress when antibiotics are eliminated from the diet or replaced with L-glutamine. Journal of Animal Science, 95(1), 91–102. doi:10.2527/jas2016.1070

Klasing, K. C. (2007). Nutrition and the immune system. British Poultry Science, 48, 525-537. 10.1080/00071660701671336.

Leite da Silva, A., dos Santos, S. G. C. G., Saraiva, E. P., Fonsêca, V. de F. C., Givisiez, P. E. N., Pascoal, L. A. F., & de Amorim, M. L. C. M. (2019). Supplementation of diets with glutamine and glutamic acid attenuated the effects of cold stress on intestinal mucosa and performance of weaned piglets. Animal Production Science, 59(10). doi:10.1071/an17630

Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V., Lee, S. A. & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition, 4(2), 113–125. doi:10.1016/j.aninu.2018.01.007

Newsholme, P. (2001). Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?. The Journal of nutrition, 131, 25158-25228. doi: 10.1093/jn/131.9.2515s

NRC. (2012). Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC.

Oresanya, T. F., Beaulieu, A. D., Beltranena, E., and Patience, J. F. (2006). The effect of dietary energy concentration and total lysine/digestible energy ratio on the growth performance of weaned pigs. Canadian Journal of Animal Science, 87(1), 45–55. doi:10.4141/a05-064

Reeds, P. J. & Burrin, D. G (2001). Glutamine and the Bowel. Journal of Nutrition, 131: 2505S-2508S. https://doi.org/10.1093/jn/131.9.2505S

Rhoads, J. M & Wu, G. (2009). Glutamine, arginine, and leucine signaling in the intestine. Amino acids, 37, 111-122. https://doi.org/10.1007/s00726-008-0225-4

Rostagno, H. S. et al. (2017) Tabelas Brasileiras Para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais (488 p.). Departamento de Zootecnia-UFV, Viçosa, MG, BR.

Ruth, M. R., & Field, C. J. (2013). The immune modifying effects of amino acids on gut-associated lymphoid tissue. Journal of Animal Science and Biotechnology, 4(1), 27. doi:10.1186/2049-1891-4-27

Taylor, A. E., Toplis, P., Wellock, I. J., & Miller, H. M. (2012). The effects of genotype and dietary lysine concentration on the production of weaner pigs. Livestock Science, 149(1-2), 180–184. doi:10.1016/j.livsci.2012.06.023

Teixeira, A. de O., Nogueira, E. T., Kutschenko, M., Rostagno, H. S., & Lopes, D. C. (2014). Inclusion of glutamine associated with glutamic acid in the diet of piglets weaned at 21 days of age. Revista Brasileira de Saúde e Produção Animal, 15(4), 881–896. https://doi.org/10.1590/S1519-99402014000400013

Van der Hulst, R. R. W. J., Van Kreel, B. K., Von Meyenfeldt, M. F., Brummer, R. K., Arends, J. W., Deutz, N. E., Soeters, P. B. (1993). Glutamine and the preservation of gut integrity. Lancet, 431, 1363-1365. https://doi.org/10.1016/0140-6736(93)90939-E

Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., ... & Yin, Y. (2013). Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino acids, 44(4), 1107-1113. doi: https://doi.org/10.1007/s00726-012-1444-2

Yoo, S. S., Field, C. J., & McBurney, M. I. (1997). Glutamine supplementation maintains intramuscular glutamine concentrations and normalizes lymphocyte function in infected early weaned pigs. The Journal of nutrition, 127(11), 2253-9. doi: 10.1093/jn/127.11.2253.

Zhang, G. J., Xie, C. Y., Thacker, P. A., Htoo, J. K., & Qiao, S. Y. (2013). Estimation of the ideal ratio of standardized ileal digestible threonine to lysine for growing pigs (22–50 kg) fed low crude protein diets supplemented with crystalline amino acids. Animal feed science and technology, 180(1-4), 83-91. https://doi.org/10.1016/j.anifeedsci.2013.01.006

Zhou, H., Chen, D. W., Mao, X. B., He, J., You, J., Zheng, P., Luo, J. Q., Gao, J., Htoo, J., & Yu, B. (2018). Effects of dietary lysine levels on jejunal expression of amino acids transporters and hindgut microflora in weaned pigs. Journal Animal. Feed Science, 27(3), 238–247. https://doi.org/10.22358/jafs/93736/2018

DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n6SUPL2p3919

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional