Efeitos comparativos dos polifenóis extraídos dos resíduos do chá preto e verde na fermentabilidade in vitro dos ingredientes da ração

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n3Supl1p2005

Palavras-chave:

Resíduos de chá preto e verde, In vitro, Trato gastrointestinal, Valor nutricional.

Resumo

O efeito do uso de extratos de resíduos de chá preto e verde sobre o valor nutricional da dieta foi investigado com três métodos de degradabilidade in vitro, produção de gás e digestão enzimática de McNiven no presente experimento. Os compostos fenólicos totais e o tanino total para o extrato de chá verde foram 20,3% e 14,8% da matéria seca, respectivamente, e para o chá preto foram 18,7% e 12,7% da matéria seca, respectivamente. A adição de extratos de resíduos de chá verde e preto reduziu a produção de gases durante as horas de incubação e a degradabilidade da matéria seca da dieta (p < 0,05). Um desaparecimento de matéria seca ruminal significativamente reduzido (p < 0,05) e um desaparecimento de matéria seca pós-ruminal significativamente aumentado (p < 0,05) foram observados pela adição de extratos de resíduos de chá preto e verde. De acordo com os resultados, o desaparecimento da matéria seca ao longo do trato gastrointestinal não foi significativamente diferente entre os tratamentos. Em geral, pode-se concluir que a adição de compostos fenólicos pode ser utilizada dependendo da estratégia nutricional, como redução da degradabilidade ruminal e aumento do escape ruminal de nutrientes.

Métricas

Carregando Métricas ...

Biografia do Autor

Nazak Shokrani Gheshlagh, Faculty of Agriculture, University of Tabriz

Student, Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Hamid Paya, Faculty of Agriculture, University of Tabriz

Assistant Prof., Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

Akbar Taghizadeh, Faculty of Agriculture, University of Tabriz

Full Prof., Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

Hamid Mohammadzadeh, Faculty of Agriculture, University of Tabriz

Assistant Prof., Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

Valiollah Palangi, Agricultural Faculty, Ataturk University

Researcher, Department of Animal Science, Agricultural Faculty, Ataturk University, 25240, Erzurum, Turkey.

Yousef Mehmannavaz, Islamic Azad University

Associate Prof., Department of Animal Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran

Referências

Adejoro, F. A., Hassen, A., & Akanmu, A. M. (2019). Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals, 9(11), 863. doi: 10.3390/ani 9110863

Alirezalu, K., Hesari, J., Eskandari, M. H., Valizadeh, H., & Sirousazar, M. (2017). Effect of green tea, stinging nettle and olive leaves extracts on the quality and shelf life stability of frankfurter type sausage. Journal of Food Processing and Preservation, 41(5), e13100. doi: 10.1111/jfpp.13100

Animut, G., Puchala, R., Goetsch, A. L., Patra, A. K., Sahlu, T., Varel, V. H., & Wells, J. (2008). Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Animal Feed Science and Technology, 144(3-4), 212-227. doi: 10.1016/j.anifeedsci.2007.10.014

Arisya, W., Ridwan, R., Ridla, M., & Jayanegara, A. (2019). Tannin treatment for protecting feed protein degradation in the rumen in vitro. In Journal of Physics: Conference Series, 1360(1), 012022. doi: 10. 1088/1742-6596/1360/1/012022

Ayaşan, T. (2020). Determination of nutritional value of some quinoa varieties. Turkish Journal of Veterinary and Animal Sciences, 44(4), 950-954. doi: 10.3906/vet-2003-53

Ayasan, T., Sucu, E., Ülger, I., Hizli, H., Çubukcu, P., & Özcan, B. D. (2020). Determination of in vitro rumen digestibility and potential feed value of tiger nut varieties. South African Journal of Animal Science, 50(5), 738-744. doi: 10.4314/sajas.v50i5.12

Besharati, M., Palangi, V., Moaddab, M., Nemati, Z., Pliego, A. B., & Salem, A. Z. (2020). Influence of Cinnamon Essential Oil and Monensin on Ruminal Biogas Kinetics of Waste Pomegranate Seeds as a Biofriendly Agriculture Environment. Waste and Biomass Valorization, (in press), 1-10. doi: 10.1007/s 12649-020-01167-2

Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J., & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176(1-4), 78-93. doi: 10.1016/j.anifeedsci.2012.07.010

Cieslak, A., Zmora, P., Pers-Kamczyc, E., & Szumacher-Strabel, M. (2012). Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Animal Feed Science and Technology, 176(1-4), 102-106. doi: 10.1016/j.anifeedsci.2012.07.012

Cimrin, T., Tunca, R. I., Avsaroglu, M. D., Ayasan, T., & Küçükersan, S. (2020). Effects of an antibiotic and two phytogenic substances (cinnamaldehyde and 1, 8-cineole) on yolk fatty acid profile and storage period-associated egg lipid peroxidation level. Revista Brasileira de Zootecnia, 49, e20190270. doi: 10. 37496/rbz4920190270

Costa, E. D. S., Ribiero, C. V. D. M., Silva, T. M., Ribeiro, R. D. X., Vieira, J. F., Lima, A. D. O., & Oliveira, R. L. (2021). Intake, nutrient digestibility, nitrogen balance, serum metabolites and growth performance of lambs supplemented with Acacia mearnsii condensed tannin extract. Animal Feed Science and Technology, 272, 114744. doi: 10.1016/j.anifeedsci.2020.114744

Derix, J. (2017). The effect of high tannin concentrations in feed on protein digestion: grazers versus intermediate browsers. Ghent: Ghent University.

Fedorah, P. M., & Hrudey, S. E. (1983). A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environmental Technology, 4(10), 425-432. doi: 10.1080/0959333830938422 8

Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Galliou, F., Manios, T., & Zervas, G. (2020). Bioactive compounds in food waste: a review on the transformation of food waste to animal feed. Foods, 9(3), 291. doi: 10.3390/foods9030291

Getachew, G., Makkar, H. P. S., & Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139(3), 341-352. doi: 10.1017/S0021859602002393

Kelln, B., Penner, G. B., Acharya, S. N., McAllister, T. A., & Lardner, H. A. (2020). Impact of condensed tannin containing legumes on ruminal fermentation, nutrition and performance in ruminants: a review. Canadian Journal of Animal Science, (in press). doi: 10.1139/CJAS-2020-0096

Khokhar, S., & Magnusdottir, S. G. M. (2002). Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry, 50(3), 565-570. doi: 10.1021/jf010153l

Koenig, K. M., & Beauchemin, K. A. (2018). Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. Journal of Animal Science, 96(10), 4398-4413. doi: 10.1093/jas/sky27 3

Kondo, M., Hirano, Y., Ikai, N., Kita, K., Jayanegara, A., & Yokota, H. O. (2014). Assessment of anti-nutritive activity of tannins in tea by-products based on in vitro rumen fermentation. Asian-Australasian Journal of Animal Sciences, 27(11), 1571-1576. doi: 10.5713/ajas.2014.14204

Liu, Z. Y., Hu, Y. Y., Zhao, M. T., Xie, H. K., Hu, X. P., Ma, X. C., & Zhou, D. Y. (2020). Formation and disappearance of aldehydes during simulated gastrointestinal digestion of fried clams. Food & Function, 11(4), 3483-3492. doi: 10.1039/C9FO03021B

Makkar, H. P. (2005). Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage: achievements, result implications, and future research. Animal Feed Science and Technology, 122(1-2), 3-12. doi: 10.1016/j.anifeedsci.2005.04.001

McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal, 43(1), 99-109. doi: 10.1042/bj0430099

Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. doi: 10.1017/S0021859600086305

Menke, K. H., & Steingass, H. (1987). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-12. Recovered from https://www.scienceopen.com/document?vid=e1859372-e696-424a-85fb-d305b0b594 bc

Min, B. R., Solaiman, S., Waldrip, H. M., Parker, D., Todd, R. W., & Brauer, D. (2020). Dietary mitigation of enteric methane emissions from ruminants: a review of plant tannins mitigation options. Animal Nutrition, 6(3), 231-246. doi: 10.1016/j.aninu.2020.05.002

Mohamaden, W. I., Hegab, I. M., & Shang-li, S. (2020). In situ ruminal degradation kinetics and blood metabolites as affected by feeding different sources of tannin and flavonoids to small-tailed Han rams. Livestock Science, 239, 104029. doi: 10.1016/j.livsci.2020.104029

Muthumani, T., & Kumar, R. S. (2007). Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chemistry, 101(1), 98-102. doi: 10.1016/j.foodchem.2006.01. 008

Palangi, V., & Besharati, M. (2020). Validation of in situ disappearance curves utilizing mathematical models for incubating fish meal and cottonseed meal. Semina: Ciências Agrárias, 41(6, Supl. 2), 3391-3396. doi: 10.5433/1679-0359.2020v41n6Supl2p3391

Palangi, V., & Macit, M. (2021). Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Waste and Biomass Valorization, (in press), 1-10. doi: 10.1007/ s12649-021-01347-8

Palangi, V., Macit, M., & Bayat, A. R. (2020). Mathematical models describing disappearance of lucerne hay in the rumen using the nylon bag technique. South African Journal of Animal Science, 50(5), 719-725. doi: 10.4314/sajas.v50i5.9

Patra, A. K., & Aschenbach, J. R. (2018). Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: a review. Journal of Advanced Research, 13, 39-50. doi: 10.1016/j.jare.2018.02.005

Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24-37. doi: 10.1002/jsfa.4152

Paya, H., Taghizadeh, A., Janamohamadi, H., & Moghadam, G. A. (2008). Ruminal dry matter and crude protein degradability of some tropical (Iranian) feeds used in ruminant diets estimated using the in situ and in vitro techniques. Research Journal of Biological Sciences, 3(7), 720-725. Recovered from https:// medwelljournals.com/abstract/?doi=rjbsci.2008.720.725

Paya, H., Taghizadeh, A., Lashkari, H., & Shirmohammadi, S. (2012). Evaluation of rumen fermentation kinetics of some by-products using in situ and in vitro gas production technique. Slovak Journal of Animal Science, 45(4), 127-133. Recovered from https://sjas.ojs.sk/sjas/article/view/291

Piluzza, G., Sulas, L., & Bullitta, S. (2014). Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass and Forage Science, 69(1), 32-48. doi: 10.1111/gfs.12053

Ramdani, D., Chaudhry, A. S., & Seal, C. J. (2013). Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. Journal of Agricultural and Food Chemistry, 61(20), 4961-4967. doi: 10.1021/jf4002439

Razmaza, V., Torbatinejad, N. M., Seifdavati, J., & Zerehdaran, S. (2016). Effect of different varieties of pomegranate peels (Torsh Jangali Gorgan, malas Behshahr and Shirin kolbad) on dry matter digestibility, number of protozoa and methane production in vitro. Journal of Ruminant Research, 4(2), 111-132. doi: 10.22069/EJRR.2016.3230

Salami, S. A., Luciano, G., O'Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37-55. doi: 10.1016/j.anifeedsci.2019.02.006

Sallam, S. M., Attia, M. F., El-Din, A. N. N., El-Zarkouny, S. Z., Saber, A. M., El-Zaiat, H. M., & Zeitoun, M. M. (2019). Involvement of Quebracho tannins in diet alters productive and reproductive efficiency of postpartum buffalo cows. Animal Nutrition, 5(1), 80-86. doi: 10.1016/j.aninu.2018.08.003

Samal, L., Chaudhary, L. C., Agarwal, N., & Kamra, D. N. (2018). Impact of phytogenic feed additives on growth performance, nutrient digestion and methanogenesis in growing buffaloes. Animal Production Science, 58(6), 1056-1063. doi: 10.1071/AN15610

Shakeri, P., Riasi, A., & Madahian, A. (2018). Use of pistachio by-product extracts by different solvents to reduce ruminal degradability of canola meal protein. Research on Animal Production (Scientific and Research), 9(20), 61-69. doi: 10.29252/rap.9.20.61

Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2017). Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, 174(11), 1244-1262. doi: 10.1111/bph.13630

SAS (2018). Institute Inc. SAS/CONNECT® 9.4 User’s Guide. Fourth Edition. Cary. NC: SAS Institute Inc.

Tiemann, T. T., Lascano, C. E., Wettstein, H. R., Mayer, A. C., Kreuzer, M., & Hess, H. D. (2008). Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal, 2(5), 790-799. doi: 10.1017/S175 1731108001791

Tran-Tu, L. C., Bosma, R. H., Verstegen, M. W. A., & Schrama, J. W. (2019). Effect of dietary viscosity on digesta characteristics and progression of digestion in different segments of the gastrointestinal tract of striped catfish (Pangasionodon hypophthalmus). Aquaculture, 504, 114-120. doi: 10.1016/j.aquaculture. 2019.01.047

Vasta, V., Daghio, M., Cappucci, A., Buccioni, A., Serra, A., Viti, C., & Mele, M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. Journal of Dairy Science, 102(5), 3781-3804. doi: 10.3168/jds.2018-14985

Zhang, J., Xu, X., Cao, Z., Wang, Y., Yang, H., Azarfar, A., & Li, S. (2019). Effect of different tannin sources on nutrient intake, digestibility, performance, nitrogen utilization, and blood parameters in dairy cows. Animals, 9(8), 507. doi: 10.3390/ani9080507

Downloads

Publicado

2021-04-22

Como Citar

Gheshlagh, N. S., Paya, H., Taghizadeh, A., Mohammadzadeh, H., Palangi, V., & Mehmannavaz, Y. (2021). Efeitos comparativos dos polifenóis extraídos dos resíduos do chá preto e verde na fermentabilidade in vitro dos ingredientes da ração. Semina: Ciências Agrárias, 42(3Supl1), 2005–2022. https://doi.org/10.5433/1679-0359.2021v42n3Supl1p2005

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)