Yield and physiological quality of wheat seeds produced under different irrigation depths and leaf Silicon

Guilherme Fontes Valory Gama, Rafael Macedo de Oliveira, Daniel Teixeira Pinheiro, Laércio Junio da Silva, Denise Cunha Fernandes dos Santos Dias


Water availability is one of the main factors responsible for wheat productivity, as well as the quality of the produced seeds. Silicon (Si) has an important role in mitigating the effects of various biotic and abiotic stresses. Thus, Si application can be used to mitigate the effects of different irrigation depths on the production and quality of wheat seeds. The work aimed to evaluate the yield and physiological quality of wheat seeds produced from plants fertilized with leaf Si and grown under different irrigation depths. The experiment was laid out in a split-plot randomized block design, with four replications. The plots consisted of three irrigation depths (0, 50, and 100% of the total irrigation requirement [TIR]). Si treatments were allocated (without application [0 mM] and 5 mM SiO2, applied at the tillering stage) in the subplots. The following parameters were evaluated: water balance of the system; soil moisture; yield; thousand seed weight; germination; electrical conductivity; accelerated aging; seedling length and emergence. The water balance of the system was negative for the 0% TIN irrigation depth after anthesis and there was less soil moisture in this irrigation depth. There was no effect of irrigation depths and Si application on plant yield. The smaller irrigation depths imposed reduced the thousand seed weight and increased the electrical conductivity of the seeds produced. Plants fertilized with Si did not differ in germination, but they produced more vigorous seedlings with greater growth and uniformity.


Abiotic stress; Physiological potential; Foliar fertilizers; Triticum aestivum L.; Seed vigor.

Full Text:



Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y.,… Dai, T. (2018). (2018). Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 145, 12-20. doi: 10.1016/j.envexpbot.2017.10.002

Albrecht, J. C., Silva, M. S., Andrade, J. M. V., Scheeren, P. L., Trindade, M. G., Soares Sobrinho, J.,... & Yamanaka, C. H. (2006). Trigo BRS 264: Cultivar precoce com alto rendimento de grãos indicada para o Cerrado do Brasil Central. (Documento 174). Planaltina: EMBRAPA Cerrados.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, J. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO. Irrigation and Drainage Paper.

Arif, M., Atta, S., Bashir, M. A., Khan, M. I., Hussain, A., Shahjahan, M., Alwahibi, M. S., & Elshikh, M. S. (2021). The impact of Fosetyl-Aluminium application timing on Karnal bunt suppression and economic returns of bread wheat (Triticum aestivum L.). Plos One, 16(1), 1-15. doi: 10.1371/journal. pone.0244931

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391-396. doi: 10.1104/pp.106.082040

Battaglia, M., & Covarrubias, A. A. (2013). Late embryogenesis abundant (LEA) proteins in legumes. Frontiers in Plant Science, 4(190), 1-8. doi: 10.3389/fpls.2013.00190

Benincasa, M. M. P. (2003). Análise de crescimento de plantas: noções básicas. Jaboticabal: FUNEP.

Blum, A. (1998). Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica, 100(1-3), 77-83. doi: 10.1023/A:1018303922482

Borém, A., & Scheeren, P. L. (2015). Trigo: do plantio à colheita. Viçosa, MG: Ed. UFV.

Buitink, J., Leger, J. J., Guisle, I., Vu, B. L., Wuillème, S., Lamirault, G.,... Leprince, O. (2006). Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccations ensitive to desiccation tolerant stages in Medicago truncatula seeds. The Plant Journal, 47(5), 735-750. doi: 10.1111/j.1365-313X.2006.02822.x

Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E.,... Stanca, A.M. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research, 105(1-2), 1-14. doi: 10.1016/j.fcr.2007.07.004

Crusciol, C. A. C., Arf, O., Zucareli, C., Sá, M. E., & Nakagawa, J. (2001). Produção e qualidade fisiológica de sementes de arroz de terras altas em função da disponibilidade hídrica. Revista Brasileira de Sementes, 23(2), 287-293. doi: 10.17801/0101-3122/rbs.v23n2p287-293

Eskandari, H., & Alizadeh-Amraie, A. (2017). Evaluation of seed quality of wheat (Triticum aestivum) under water limitation induced by a partial root-zone irrigation regime. Seed Science and Technology, 45(1), 248-251. doi: 10.15258/sst.2017.45.1.10

Fanan, S., Medina, P. F., Lima, T. C., & Marcos, J., Fº. (2006). Avaliação do vigor de sementes de trigo pelos testes de envelhecimento acelerado e de frio. Revista Brasileira de Sementes, 28(2), 152-158. doi: 10.1590/S0101-31222006000200021

Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331-349. doi: 10.1080/07352689.2014.875291

Farooq, M., Irfan, M., Aziz, T., Ahmad, I., & Cheema, S. A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 199(1), 12-22. doi: 10. 1111/j.1439-037X.2012.00521.x

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In E. Lichtfouse., M. Navarrete., P. Debaeke., S. Véronique & C. Alberola (Eds.), Sustainable agriculture (pp. 153-188). Dordrecht: Springer. Retrieved from https:// link.springer.com/article/10.1051/agro:2008021

Finch-Savage, W. E., & Bassel, G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567-591. doi: 10.1093/jxb/erv490

Hajiboland, R., Moradtalab, N., Eshaghi, Z., & Feizy, J. (2018). Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. New Zealand Journal of Crop and Horticultural Science, 46(2), 144-161. doi: 10.1080/01140671.2017.1373680

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi: 10.1016/j.wace.2015.08.001

Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027-1046. doi: 10.1093/aob/mci255

Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2018). Mechanisms of maturation and germination in crop seeds exposed to environmental stresses with a focus on nutrients, water status, and reactive oxygen species. In M. Iwaya-Inoue., M. Sakurai & M. Uemura (Eds.), Survival strategies in extreme cold and desiccation (pp. 233-257). Singapore: Springer. Retrieved from https://link.springer.com/chapter/10. 1007/ 978-981-13-1244-1_13

Jia, S., Lv, J., Jiang, S., Liang, T., Liu, C., & Jing, Z. (2015). Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit. Photosynthetica, 53(1), 95-109. doi: 10.1007/s11099-015-0087-4

Kassambara, A., & Mundt, F. (2017). Factoextra: extract and visualize the results of multivariate data analyses. R Package Version, 1(5), 337-354.

Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Frontiers in Plant Science, 8(510), 1-7. doi: 10.3389/ fpls.2017.00510

Klein, V. A. (2008). Física do solo. Passo Fundo: Ed. da UPF.

Krzyzanowski, F. C., França-Neto, J. B., Gomes, F. G., Jr., & Nakagawa, J. (2020). Testes de vigor baseados em desempenho de plântulas. In F. C. Krzyzanowski., R. D. Vieira., J. Marcos Fo. & J. B. França-Neto (Eds.), Vigor de sementes: conceitos e testes (pp. 79-140). Londrina, PR: ABRATES.

Large, E. C. (1954). Growth stages in cereals. Illustration of the Feekes scale. Plant Pathology, 3(4), 128-129. doi: 10.1111/j.1365-3059.1954.tb00716.x

Lawlor, D. W., Day, W., Johnston, A. E., Legg, B. J., & Parkinson, K. J. (1981). Growth of spring barley under drought: crop development, photosynthesis, dry-matter accumulation and nutrient content. The Journal of Agricultural Science, 96(1), 167-186. doi: 10.1017/S002185960003197X

Li, W., Zhang, B., Li, R., Chang, X., & Jing, R. (2015). Favorable alleles for stem water-soluble carbohydrates identified by association analysis contribute to grain weight under drought stress conditions in wheat. Plos One, 10(3), 1-15. doi: 10.1371/journal.pone.0119438

Libardi, V. C. M., & Costa, M. B. (1997). Consumo d’água da cultura do trigo (Tricutum aestivum, L.). Revista da Faculdade de Zootecnia Veterinária e Agronomia, 4(1), 17-22. Recuperado de http:// revistaseletronicas.pucrs.br/ojs/index.php/fzva/article/view/1962

Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: current knowledge and technological perspectives. Frontiers in Plant Science, 8(411), 1-8 . doi: 10.3389/fpls.2017.00411

Marafon, A. C. (2011). Adubação silicatada em cana-de-açúcar é alvo de estudo da EMBRAPA. Aracaju, SE: EMBRAPA Tabuleiros Costeiros-Artigo de divulgação na mídia (INFOTECA-E). Recuperado de http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1014580

Medeiros, A. D. D., & Pereira, M. D. (2018). SAPL®: a free software for determining the physiological potential in soybean seeds1. Pesquisa Agropecuária Tropical, 48(3), 222-228. doi: 10.1590/1983-4063 2018v4852340

Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Kundu, S., & Rao, A. S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 505-518. doi: 10.1007/s40011-013-0270-y

Ministério da Agricultura, Pecuária e Abastecimento (2009). Regras para análise de sementes. Brasília: MAPA/ACS. Recuperado de https://www.gov.br/agricultura/pt-br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/regras-para-analise-de-sementes.pdf/view

Ministério da Agricultura, Pecuária e Abastecimento (2013). Padrões para produção e comercialização de sementes de trigo. Instrução Normativa no 45, de 17 de Setembro de 2013. Brasília: MAPA.. Recuperado de http://www.abrasem.com.br/wp-content/uploads/2012/10/Instru%C3%A7%C3%A3o-Normativa-n%C2%BA-45-de-17-de-Setembro-de-2013-Padr%C3%B5es-deIdentidade-e-Qualiidade-Prod-e-Comerc-deSementes-Grandes-Culturas-Republica%C3%A7%C3%A3oDOU-20.09.13.pdf

Mori, D. C. (2015). Aspectos econômicos da produção e utilização. In A. Borém & P. L. Scheeren (Eds.), Trigo: do plantio à colheita (pp. 11-33). Viçosa, MG: UFV.

Oliveira, S., Lemes, E. S., Meneghello, G. E., Tavares, L. C., & Barros, A. C. A. (2015). Silicon application to the soil on soybean yield and seed physiological quality. Semina: Ciências Agrárias, 36(5), 3029-3042. doi: 10.5433/1679-0359.2015v36n5p3029

Oliveira, T. F., Santos, H. O. D., Carvalho, R. A. D., Silva, H. W. D., Pires, R. M. D. O., & Carvalho, E. R. (2020). Reserve mobilization in soybean seeds under water restriction after storage. Journal of Seed Science, 42, e202042024. doi: 10.1590/2317-1545v42231384

Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E., & Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science, 8(490), 1-15. doi: 10.3389/fpls.2017.00490

R Core Team (2019). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Ribeiro, A. C. (1999). Recomendação para o uso de corretivos e fertilizantes em Minas Gerais (5a. aproximação). Viçosa, MG: Comissão de Fertilidade do Solo do Estado de Minas Gerais.

Sá, M. E. (1994). Importância da adubação na qualidade de sementes. In M. E. Sá & S. Buzzeti (Eds.), Importância da adubação na qualidade dos produtos agrícolas (pp. 65-98). São Paulo: Ícone.

Sako, Y., McDonald, M. B., Fujimura, K., Evans, A. F., & Bennett, M. A. (2001). A system for automated seed vigour assessment. Seed Science and Technology, 29(3), 625-636. Retrieved from https://www. eurofinsus.com/media/162083/seed-vigor-imaging-system.pdf

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R.,... Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos (3a ed. rev. ampl.). Brasília: EMBRAPA.

Sattar, A., Cheema, M. A., Sher, A., Ijaz, M., Ul-Allah, S., Nawaz, A., Abbas, T., & Ali, Q. (2019). Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiologiae Plantarum, 41(8), 146. doi: 10.1007/s11738-019-2938-2

Silva, L. J. D., Medeiros, A. D. D., & Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41(2), 250-257. doi: 10. 1590/2317-1545v42n2217267

Toledo, M. Z., Amaral Castro, G. S., Costa Crusciol, C. A., Soratto, R. P., Cavariani, C., Ishizuka, M. S., & Picoli, L. B. (2012). Silicon leaf application and physiological quality of white oat and wheat seeds. Semina: Ciências Agrárias, 33(5), 1693-1701. doi: 10.5433/1679-0359.2012v33n5p1693

United States Department of Agriculture (2020). World wheat production, consumption, and stocks. Washington, DC: USDA. Retrieved from https://apps.fas.usda.gov/psdonline/app/index.html#/app/ downloads

Van Der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P., Boom, A., Bongers, F…., Zuidema, P. A. (2015). No growth stimulation of tropical trees by 150 years of CO 2 fertilization but water-use efficiency increased. Nature Geoscience, 8(1), 24-28. doi: 10.1038/ngeo2313

Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics.Boca Raton, FL: CRC Press.

Vieira, R. D., & Marcos, J. Fo. (2020). Teste de condutividade elétrica. In F. C. Krzyzanowski., R. D. Vieira., J. Marcos Fo. & J. B. França-Neto (Eds.), Vigor de sementes: conceitos e testes (pp. 333-388). Londrina, PR: ABRATES. Wang, S. Y., & Galletta, G. J. (1998). Foliar application of potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutrition, 21(1), 157-167. doi: 10.1080/019 04169809365390

Wu, J., Mock, H. P., Giehl, R. F., Pitann, B., & Mühling, K. H. (2019). Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. Journal of Hazardous Materials, 364, 581-590. doi: 10.1016/j.jhazmat.2018.10.052

Yang, J. C., Zhang, J. H., Wang, Z. Q., Zhu, Q. S., & Liu, L. J. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell & Environment, 26(10), 1621-1631. doi: 10.1046/j.13653040.2003.010 81.x

Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S.,… Simmons, C. T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6(1), 1-8. doi: 10.1038/srep23284

Zhang, X., Wang, X., Zhong, J., Zhou, Q., Wang, X., Cai, J.,... Jiang, D. (2016). Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 127, 26-36. doi: 10.1016/j.envexpbot.2016.03.004

Zhao, H., Qu, S., Guo, S., Zhao, H., Liang, S., & Xu, M. (2019). Virtual water scarcity risk to global trade under climate change. Journal of Cleaner Production, 230, 1013-1026. doi: 10.1016/j.jclepro.2019.05. 114

DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n4p2233

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional