Optimization of dietary lemon seed essential oil to enhance alfalfa silage chemical composition and in vitro degradability

Maghsoud Besharati, Valiollah Palangi, Masomeh Niazifar, Zabihollah Nemati


Purpose of the experiment was to evaluate the effect of lemon-seed essential oils on chemical composition and in vitro degradability of alfalfa silage. Treatments were alfalfa silage with no additive (control) or treated with 60 ml/kg DM of lemon-seed (C60), of lemon-seed (C120) essential oils and equal mixed of them (M60). Whole plant alfalfa silage was ensiled for 60 d in triplicate laboratory scale tubes. Dry matter, organic matter, crude protein, insoluble fiber in acidic and neutral detergent, water soluble carbohydrate, pH, were measured with 3 replicates by in vitro gas production method. Dry matter (DM) content was greater for leo60 than control.  Compared with control, neutral detergent fiber (NDF) concentration was decreased in leo120. Addition of essential oils and their combination to the silage significantly decreased (p<.0001) silage pH compared with untreated silage interestingly increased for all the silages containing essential oil compared with untreated silage. Addition of lemon-seed essential to alfalfa silage decreased the rate of disappearance of organic matter and dry matter in all treatments compared to the control treatment. The degradability potential of alfalfa silage has increased in treatments containing lemon-seed essential oil (60 ml / kg DM) which is significantly different from the control. In general, the obtained data show the positive effect of lemon-seed essential oil on the quality of alfalfa silage and its fermentation properties.


Alfalfa silage; Degradability; Lemon-seed essential oil; Fermentation.

Full Text:



Abudunia, A. M., Hafidi, H., Algabr, M., Akachar, J., Almahbashi, H., Ramli, Y., & Khedid, K. (2017). Evaluation of essential oils for antimicrobial activity from some Moroccan aromatic plants medicinal. Journal of Materials and Environmental Science, 8(12), 4240-4245. http://www.jmaterenvironsci.com/

Adesogan, A. T., Krueger, N., Salawu, M. B., Dean, D. B., & Staples, C. R. (2004). The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science, 87(10), 3407-3416. doi: 10.3168/jds.S0022-0302(04)73476-1

Aghdam, M. S., Luo, Z., Jannatizadeh, A., Sheikh-Assadi, M., Sharafi, Y., Farmani, B., & Razavi, F. (2019). Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chemistry, 275(1), 549-556. doi: 10.1016/j.foodchem.2018.09.157

Association of Offical Analytic Chemists (2002). Official method of Analytic (vol. 1, 17nd ed.). Arlington, VA: AOAC.

Benchaar, C., McAllister, T. A., Petit, H. V., & Chouinard, P. Y. (2014). Whole flax seed and flax oil supplementation of dairy cows fed high-forage or high-concentrate diets: effects on digestion, ruminal fermentation characteristics, protozoal populations and milk fatty acid profile. Animal Feed Science Technology, 198, 117-29. doi: 10.1016/j.anifeedsci.2014.10.003

Besharati, M., & Niazifar, M. (2020). The effect of lemon seed essential oil on composition, chemical characteristics, and gas production parameters of alfalfa silage. Journal of Animal Science, 30(1), 93-104. doi: 10.22034/AS.2020.11018

Besharati, M., Palangi, V., Moaddab, M., Nemati, Z., Pliego, A. B., & Salem, A. Z. (2020). Influence of cinnamon essential oil and monensin on ruminal biogas kinetics of waste pomegranate seeds as a biofriendly agriculture environment. Waste and Biomass Valorization, (in press). doi: 10.1007/s12649-020-01167-2

Besharati, M., Palangi, V., Niazifar, M., & Nemati, Z. (2020). Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agriculturae Slovenica, 2(424), 115. doi: 10.14720/aas.2020.115.2.1483

Besharati, M., Shafipour, N., & Nemati, Z. (2019). Effect of supplementation of alfalfa silage with Lactobacillus Buchneri additive, orange pulp and molasses on dry matter, crude protein and organic matter degradability by nylon bags. Research Animal Production, 10(23), 45-52. doi: 10.29252/rap.10.23.45

Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J., & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science Technology, 176(1-4), 78-93. doi:10.1016/j.anifeedsci.2012.07.010

Borchers, R. (1965). Proteolytic activity of rumen fluid in vitro. Journal of Animal Science, 24(4), 1033-1038. doi: 10.2527/jas1965.2441033x

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018). Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. doi: 10.3168/jds.2017-13837

Borshchevskaya, L. N., Gordeeva, T. L., Kalinina, A. N., & Sineokii, S. P. (2016). Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry, 71(8), 755-758. doi: 10.1134/S1061934816080037

Busquet, M., Calsamiglia, S., Ferret, A., Carro, M. D., & Kamel, C. (2005). Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science, 88(12), 4393-4404. doi: 10.3168/jds.S0022-0302(05)73126-X

Chaves, A. V. (2012). Effects of cinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. Journal of Science Food and Agriculture, 92(4), 906-915. doi: 10.1002/jsfa.4669

Dubios, A., Giles, M. K. A., Hamilton, J. K., Ronerts, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(30), 350-356. doi: 10.1021/ac60111a017

Dunière, L., Sindou, J., Chaucheyras-Durand, F., Chevallier, I., & Thévenot-Sergentet, D. (2013). Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science and Technology, 182(1-4), 1-15. doi: 10.1016/j.anifeedsci.2013.04.006

Duodu, K. G., Taylor, J. R. N., Belton, P. S., & Hamaker, B. R. (2003). Factors affecting sorghum protein digestibility. Journal of Cereal Science, 38(2), 117-31. doi: 10.1016/S0733-5210(03)00016-X

Elcoso, G., Zweifel, B., & Bach, A. (2019). Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Applied Animal Science, 35(3), 304-311. doi: 10.15232/aas.2018-01825

Foskolos, A., Cavini, S., Ferret, A., & Calsamiglia, S. (2016). Effects of essential oil compounds addition on ryegrass silage protein degradation. Canadian Journal of Animal Science, 96(2), 100-3. doi: 10.1139/cjas-2015-0025

Garcia, F., Colombatto, D., Brunetti, M. A., Martínez, M. J., Moreno, M. V., Scorcione Turcato, M., & Martínez Ferrer, J. (2020). The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals, 10(5), 786. doi: 10.3390/ani10050786

Geraci, A., Di Stefano, V., Di Martino, E., Schillaci, D., & Schicchi, R. (2017). Essential oil components of orange peels and antimicrobial activity. Natural Product Research, 31(6), 653-659. doi: 10.1080/14786419.2016.1219860

Gozalpur, V., Besharati, M., Nemati, Z., & Abdi, E. (2017). Effect of commercial essential oil (ESSENTIAL) on the characteristics of silage alfalfa with apple pulp. Proceeding of the International and National Conference on Organic vs. Conventional Agriculture, Ardabil, Iran, 1, 5. https://civilica.com/doc/932840

Hodaj-Çeliku, E., Tsiftsoglou, O., Shuka, L., Abazi, S., Hadjipavlou-Litina, D., & Lazari, D. (2017). Antioxidant activity and chemical composition of essential oils of some aromatic and medicinal plants from Albania. Natural Product Communications, 12(5), 1934578X1701200525. doi: 10.1177/1934578X1701200525

Hodjatpanah-Montazeri, M., Danesh Mesgaran, M., & Vakili, A. (2016). Effect of Essential Oils of Various Plants as Microbial Modifier to Alter Corn Silage Fermentation and in vitro Methane Production. Iranian Journal of Applied Animal Science, 6(2), 269-276. http://ijas.iaurasht.ac.ir/article_522780.html

Hoelzer, K., Bielke, L., Blake, D. P., Cox, E., Cutting, S. M., Devriendt, B., & Metzner, M. (2018). Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Veterinary Research, 49(1), 64. doi: 10.1186/s13567-018-0560-8

Joch, M., Kudrna, V., Hakl, J., Božik, M., Homolka, P., Illek, J., & Výborná, A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Animal Feed Science and Technology, 251, 176-186. doi: 10.1016/j.anifeedsci.2019.03.009

Kolling, G. J., Stivanin, S. C. B., Gabbi, A. M., Machado, F. S., Ferreira, A. L., Campos, M. M., & Fischer, V. (2018). Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. Journal of Dairy Science, 101(5), 4221-4234. doi: 10.3168/jds.2017-13841

Kouazounde, J. B., Jin, L., Assogba, F. M., Ayedoun, M. A., Wang, Y., Beauchemin, K. A., & Gbenou, J. D. (2015). Effects of essential oils from medicinal plants acclimated to Benin on in vitro ruminal fermentation of Andropogon gayanus grass. Journal of the Science of Food and Agriculture, 95(5), 1031-1038. doi: 10.1002/jsfa.6785

Lemus, C., Bonilla, J., Plasencia, A., & Ly, J. (2012). Chemical characteristics of silages of mango (Mangifera indica L.) by products for animal feeding. Cuban Journal of Agricultural Science, 46(4). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chemical+characteristics+of+silages+of+mango+%28Mangifera+indica+L.%29+by+products+for+animal+feeding&btnG=

Lynch, J. P., Prema, D., Van Hamme, J. D., Church, J. S., & Beauchemin, K. A. (2014). Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fibrolytic enzymes and a ferulic acid esterase-producing inoculant. Canadian Journal of Animal Science, 94(4), 697-704. doi: 10.4141/cjas-2014-086

Macheboeuf, D., Morgavi, D. P., Papon, Y., Mousset, J. L., & Arturo-Schaan, M. (2008). Dose–response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology, 145(1-4), 335-350. doi: 10.1016/j.anifeedsci.2007.05.044

Makkar H.P. (2010) In Vitro Screening of Feed Resources for Efficiency of Microbial Protein Synthesis. In: Vercoe P., Makkar H., Schlink A. (eds) In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer, Dordrecht. doi: 10.1007/978-90-481-3297-3_7

Markham, R. (1942). A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochemical Journal, 36(10-12), 790-791. doi: 10.1042/bj0360790

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage. Marlow, UK: Chalcombe Publications.340pp. https://www.cabdirect.org/cabdirect/abstract/19930759161

Mcdougall, E. I. (1948). The composition and output of sheep’s saliva. Biochemical Journal, 43(1), 99-109. doi: 10.1042/bj0430099

Moselhy, M. A., Borba, J. P., & Borba, A. E. (2015). Improving the nutritive value, in vitro digestibility and aerobic stability of Hedychium gardnerianum silage through application of additives at ensiling time. Animal Feed Science and Technology, 206, 8-18. doi: 10.1016/j.anifeedsci.2015.05.001

Oladokun, S., & Adewole, D. I. (2020). In ovo delivery of bioactive substances: an alternative to the use of antibiotic growth promoters in poultry production—a review. Journal of Applied Poultry Research, 29(3), 744-763. doi: 10.1016/j.japr.2020.06.002

Palangi, V., & Besharati, M. (2020). Validation of in situ disappearance curves utilizing mathematical models for incubating fish meal and cottonseed meal. Semina: Ciências Agrárias, 41(6Supl2), 3391-3396. doi: 10.5433/1679-0359.2020v41n6Supl2p3391

Palangi, V., Taghizadeh, A., & Sadeghzadeh, M. K. (2013). Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. Journal of Biodiversity and Environmental Sciences, 3(6), 8-16. https://www.researchgate.net/profile/Valiollah_Palangi2/publication/324561276_Determine_of_nutritive_value_of_dried_citrus_pulp_various_using_in_situ_and_gas_production_techniques/links/5ad59393a6fdcc293580adb9/Determine-of-nutritive-value-of-dried-citrus-pulp-various-using-in-situ-and-gas-production-techniques.pdf

Pour, H. A., Naserian, A. A., Vakili, A. R., & Tahmasbi, A. M. (2017). Effect of essential plant oil used as an additive to alter silage fermentation in ruminant by in vitro. Biosciences Biotechnology Research Asia, 14(1), 145-152. doi: 10.13005/bbra/2429

Rafique, S., Hassan, S. M., Mughal, S. S., Hassan, S. K., & Shabbir, N. (2020). Biological attributes of lemon: a review. Journal of Addiction Medicine and Therapeutic Science, 6(1), 30-34. doi: 10.17352/2455-3484.000034

Sardrodi, A. F., Soleimani, A., Kheiry, A., & Zibareresht, R. (2017). Essential oil composition of Achillea aucheri Boiss at different growing altitudes in Damavand, Iran. Journal of Agriculture, Science and Technology, 19(2), 357-364. http://jast.modares.ac.ir/article-23-7980-en.html

Sayyah, M., Moaied, S., & Kamalinejad, M. (2005). Anticonvulsant activity of Heracleum persicum seed. Journal of Ethnopharmacology, 98(1-2), 209-211.

Sheikh, A., & Jain, P. (2016). A thorough study of zinc ferrite nanoparticles with reference to green synthesis. International Journal of Nanomedicine and Nanosurgery, 2(3), 1-8. doi: 10.16966/2470-3206.115

Silva, V. P., Pereira, O. G., Leandro, E. S., Silva, T. C. da, Ribeiro, K. G., & Mantovani, H. C. (2016). Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. Journal of Dairy Science, 99(3), 1895-1902. doi: 10.3168/jds.2015-9792

Simitzis, P. E., Deligeorgis, S. G., Bizelis, J. A., Dardamani, A., Theodosiou, I., & Fegeros, K. (2008). Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Science, 79(2), 217-223. doi: 10.1016/j.meatsci.2007.09.005

Triantafyllidis, V., Zotos, A., Kosma, C., & Kokkotos, E. (2020). Environmental implications from long-term citrus cultivation and wide use of cu fungicides in mediterranean soils. Water, Air, & Soil Pollution, 231(238), 1-17. doi: 10.1007/s11270-020-04577-z

Turan, A., & Önenç, S. S. (2018). Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digestibility of alfalfa silage. Asian-Australasian Journal of Animal Science, 31(8), 1252. doi: 10.5713/ajas.17.0834

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583. doi: 10.3168/jds.S0022-0302(91)78551-2

Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: a review. Microbial Pathogenesis, 120, 198-203. doi: 10.1016/j.micpath.2018.04.036

Vergis, J., Gokulakrishnan, P., Agarwal, R. K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition, 55(10), 1320-1323. doi: 10.1080/10408398.2012.692127

Youcef-Ettoumi, K., Zouambia, Y., & Moulai-Mostefa, N. (2020). Chemical composition, antimicrobial and antioxidant activities of Algerian Citrus sinensis essential oil extracted by hydrodistillation assisted by electromagnetic induction heating. Journal of Food Science and Technology, (in press), 1-7. doi: 10.1007/s13197-020-04808-5

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional