Functional potential and food safety of fresh-cut ‘Paluma’ guava under edible coatings

Fernanda dos Santos Nunes de Melo, Silvanda de Melo Silva, Alex Sandro Bezerra de Sousa, Antônio Augusto Marques Rodrigues, Raylson de Sá Melo, Renato Pereira Lima, Mariany Cruz Alves da Silva, Eduardo Felipe da Silva Santos

Abstract


Guava is a fruit rich in antioxidants and its value can be enhanced by fresh-cut processing, which increases convenience for consumption. The objective of this study was to evaluate the changes in bioactive compounds, total antioxidant activity (TAA) and microbial quality in slices of fresh-cut (FC) ‘Paluma’ guava coated with chitosan at 2% (Q), calcium chloride at 1% (CC), calcium chloride at 1% + sodium alginate at 1% (CC + A), calcium chloride at 1% + chitosan at 2% (CC + Q), and control (T - without coating). Coated slices were packed in trays, wrapped with PVC film and kept at 3 ± 1 °C and 75 ± 4% RH for 12 days and evaluated for ascorbic acid, lycopene, beta-carotene, total extractable polyphenols (TEP), and TAA by ABTS+- and DPPH . Ascorbic acid content of slices did not differ by coatings, but TEP was higher in slices coated with Q. The TAA by DPPH was higher in slices coated with Q, however, by ABTS + - it was higher in those coated with Q, CC and CC + Q. No thermotolerant coliforms or Salmonella were detected in FC guava from any treatment. However, slices coated with Q showed the lowest counts of total coliforms and molds and yeasts. Therefore, the application of Q coating provided microbiological safety to FC guava, still maintaining the levels of bioactive compounds and TAA superior to the control slices, which can characterize this as a healthy FC product, with superior functional potential.

Keywords


Modified Atmosphere; ABTS. beta-carotene; DPPH; Lycopene; PET; Sodium alginate; Microbial quality.

Full Text:

PDF

References


Almulaiky, Y., Zeyadi, M., Saleh, R., & Baothman, O. (2018). Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatalysis and Agricultural Biotechnology, 16 (7), 90–97. doi: 10.1016/j.bcab.2018.07.025

Amorim, A, Souza, J.,Oliveira, A.,Santos, R.,Vasconcelos, A.,Souza, L., Araújo, T.,Cabral, W.,Silva, M.., Mafud, A., Mascarenhas,Y., Medeiros, J.-V., Saraiva J., Muehlmann, L., Kückelhaus, S., Pintado M., Leite, J. R. (2020). Anti-inflammatory and antioxidant activity improvement of lycopene from guava on nanoemulsifying system. Journal of Dispersion Science and Technology, 41(3), 1-11. doi: 10.1080/01932691.2020.1728300

APHA – American Public Health Association. (2001). Compendium of methods for the microbiological examination of foods. Washington, DC: APHA.

AOAC - Association of Official Analytical Chemistry (2005). Official methods of analysis of the association of Official Analytical Chemistry. Washington, DC:AOAC.

Brasil. Ministério da Saúde, 2001. ANVISA- Agência Nacional de Vigilância Sanitária. Resolução RDC n. 12 de 02 de janeiro de 2001 on line. Regulamento técnico sobre padrões microbiológicos para alimentos. Disponível em: http://e-legis.bvs.br. Acesso em: outubro de 2020.

Cavalini, F. C., Jacomino, A. P., Trevisan, M. J., & Miguel, A. C. A. (2015). Ponto de colheita e qualidade de goiabas ‘Kumagai’ e ‘Paluma. Revista Brasileira de Fruticultura, 37(1), 64–72. doi: 10.1590/0100-2945-013/14

Chong, J. X., Lai, S., & Yang, H. (2015). Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control, 53(7), 195–205. https://doi.org/10.1016/j.foodcont.2014.12.035

Chumyam, A., Faiyue, B., & Saengnil, K. (2019). Reduction of enzymatic browning of fresh-cut guava fruit by exogenous hydrogen peroxide-activated peroxiredoxin / thioredoxin system. Scientia Horticulturae, 255(11), 260–268. doi: 10.1016/j.scienta.2019.05.042

Dantas, A. L., Silva, S. D. M., Lima, M. A. C., Dantas, R. L., & Mendonça, R. M. N. (2013). Bioactive compounds and antioxidant activity during maturation of strawberry guava fruit. Revista Ciência Agronômica, 44 (4), 805–814. doi: 10.1590/S1806-66902013000400018

Fenech, M., Amaya, I., Valpuesta, V., & Botella, M.A. (2019). Vitamin C Content in Fruits: Biosynthesis and Regulation. Frontier of Plant Science, 9(1), 1-21. doi.org/10.3389/fpls.2018.02006.

Fan, K., Zhang, M., & Jiang, F. (2019). Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: Influence on microbial inhibition and storage quality. Ultrasonics - Sonochemistry, 54(5), 162–170. doi: 10.1016/j.ultsonch.2019.02.003

Flores, G., Wu, S., Negrin, A., & Kennelly, E. J. (2015). Chemical composition and antioxidant activity of seven cultivars of guava ( Psidium guajava ) fruits. Food Chemistry, 170 (5), 327-335. doi: 10.1016/j.foodchem.2014.08.076

Kalia, A., & Parshad, V. R. (2015). Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Critical Reviews in Food Science and Nutrition, 55(2), 159-182. doi: 10.1080/10408398.2011.649315

Murmu, S. B., & Mishra, H. N. (2018). The effect of edible coating based on Arabic gum , sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 245(8), 820–828. doi: 10.1016/j.foodchem.2017.11.104

Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39(10), 925-928. doi: 10.3136/nskkk1962.39.925

Oliveira, V. R. L., Santos, F. K. G., Leite, R. H. L., Aroucha, E. M. M., & Silva, K. N. O. (2018). Use of biopolymeric coating hydrophobized with beeswax in post-harvest conservation of guavas. Food Chemistry, 259(22), 55-64. doi: 10.1016/j.foodchem.2018.03.101

Palharini, M. C. A., Jerônimo, E. M., Jacomino, A. P., Fileti, M. S., & Almeida, A. M. (2012). Efeito de embalagens com atmosfera modificada sobre os aspectos microbiológicos e sensoriais de goiabas minimamente processadas. Nucleus, 9(1), 143-148. doi: 10.3738/nucleus.v9i1.671

Paula, N. R. F.; Vilas Boas, E. V. B.; Rodrigues, L. J.; Carvalho, R. A., & Piccoli, R. H. (2009). Qualidade de produtos minimamente processados e comercializados em gôndolas de supermercados nas cidades de Lavras-MG, Brasília –DF e São Paulo-SP. Ciência e Agrotecnologia, 33(1), 219-227. doi: 10.1590/S1413-70542009000100031

Rodrigues, A. A. M., Silva, S.M., Dantas, A.L., Silva, A.F., Santos, L.S., & Moreira, D.N. (2018). Physiology and postharvest conservation of ‘Paluma’ guava under coatings using jack fruit seed-based starch. Revista Brasileira de Fruticultura,.40 (2), 1-8. doi: 10.1590/0100-29452018352

Russo, V. C., Daiuto, E.R., Santos, B.L., Lozano, M.G., Vieites, R.L., Vieira, M.R.S. (2012). Qualidade de abóbora minimamente processada armazenada em atmosfera modificada ativa. Semina: Ciências Agrárias, 33 (3), 1071-1084. doi: 10.5433/1679-0359.2012v33n3p1071




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n4p2313

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional