Estimation of common bean (Phaseolus vulgaris) leaf area by a non-destructive method

Valeria Pohlmann, Isabel Lago, Sidinei José Lopes, Jéssica Taynara da Silva Martins, Caren Alessandra da Rosa, Milena Caye, Diego Portalanza

Abstract


The aim of this study was to develop mathematical models to estimate the leaf area of common bean (Phaseolus vulgaris) in irrigated and non-irrigated water regimes from linear dimensions. An experiment was carried out in a completely randomized design with a 3×2 factorial arrangement (three cultivars: Triunfo, Garapiá and FC 104; two water regimes: irrigated and non-irrigated) with 25 replicates each. A total of 523 trifoliates were collected throughout the crop cycle. The length (L, cm) and width (W, cm) of the central leaflet of the trifoliate were measured and their product (LW) (cm²) calculated. Then, the leaf area of these trifoliates was determined by digital photography methods using ImageJ® software, and using leaf discs. The number of samples required to estimate the leaf area of a trifoliate was determined to define which method is the most accurate to be used as the real leaf area in generating equations to estimate the leaf area in common bean. The relationship between area by digital photographs and the dimensions of the central leaflet of the trifoliate (L, W and LW) was fitted by linear, quadratic and power models. Subsequently, the predictive capacity of the equations was assessed by the root mean square error (cm2 trifoliate-1), mean absolute error (cm2 trifoliate-1), index of agreement and Pearson's correlation coefficient. Sample size varied between cultivars, water regimes and evaluation methods. It is more appropriate to use the leaf area provided by ImageJ® as real for comparison purposes in generating models to estimate leaf area from linear measurements, in common bean. The general equation LA = 1.092L1.945 can be used in the tested regimes without accuracy losses.

Keywords


Digital photographs; Leaflet length; Mathematical model; Phaseolus vulgaris.

Full Text:

PDF

References


Bakhshandeh, E., Kamkar, B., & Tsialtas, J. T. (2011). Application of linear models for estimation of leaf area in soybean [Glycine max (L.) Merr]. Photosynthetica, 49(3), 405-416. doi: 10.1007/s11099-011-00 48-5

Benincasa, M. M. P. (2003). Análise de crescimento de plantas: noções básicas. Jaboticabal, SP: Funep.

Benincasa, M. M. P., Benincasa, M., Latanze, R. J., & Jenquetti, M. T. G. (1976). Método não destrutivo para estimativa da área foliar de Phaseolus vulgaris L. (feijoeiro). Científica, 4(1), 43-48.

Comissão de Química e de Fertilidade do Solo RS/SC (2016). Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. Porto Alegre, RS: SBCS/NRS.

Companhia Nacional de Abastecimento (2021). Série histórica das safras: feijão total: (1ª, 2ª e 3ª safras). Recuperado de https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=20

Ferreira, D. F. (2009). Estatística básica. Lavras, MG: UFLA.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001

Figueiredo, E. S., Santos, M. E., & Garcia, A. (2012). Modelos de determinação não destrutivo da área foliar do feijoeiro comum (Phaseolus vulgaris L.). Nucleus, 9(1), 79-84. doi: 10.3738/1982.2278.749

Gonçalves, C. G., Silva, A. C., Jr., Pereira, M. R. R., Gasparino, E. C., & Martins, D. (2017). Morphological modifications in soybean in response to soil water management. Plant Growth Regulation, 83(1), 105-117. doi: 10.1007/s10725-017-0287-y

Hara, A. T., Gonçalves, A. C. A., Maller, A., Hashiguti, H. T., & Oliveira, J. M. (2019). Ajuste de modelo de predição de área foliar do feijoeiro em função de medidas lineares. Revista Engenharia na Agricultura, 27(2), 179-186. doi: 10.13083/reveng.v27i2.912

Justino, L. F., Alves J., Jr., Battisti, R., Heinemann, A. B., Leite, C. V., Evangeista, A. W. P., & Casaroli, D. (2019). Assessment of economic returns by using a central pivot system to irrigate common beans during the rainfed season in Central Brazil. Agricultural Water Management, 224(1), 105749. doi: 10. 1016/j.agwat.2019.105749

Kuinchtner, A., & Buriol, G. A. (2001). Clima do estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Disciplinarum Scientia, 2(1), 171-182. doi: 10.37779/nt.v2i1.1136

Lakitan, B., Widuri, L. I., & Meihana, M. (2017). Simplifying procedure for a non-destructive, inexpensive, yet accurate trifoliate leaf area estimation in snap bean (Phaseolus vulgaris). Journal of Applied Horticulture, 19(1), 15-21. doi: 10.37855/jah.2017.v19i01.03

Lopes, S. D., Brum, B., Santos, V. J., Fagan, E. B., Luz, G. P., & Medeiros, S. L. P. (2007). Estimativa da área foliar de meloeiro em estádios fenológicos por fotos digitais. Ciência Rural, 37(4), 1153-1156. doi: 10.1590/S0103-84782007000400039

Martin, T. N., Marchese, J. A., Sousa, A. K. F., Curti, G. L., Fogolari, H., & Cunha, V. S. (2013). Uso do software ImageJ na estimativa de área foliar para a cultura do feijão. Interciência, 38(12), 843-848. doi: 0378-1844/13/12/843-06 $ 3.00/0

Padrón, R. A. R., Lopes, S. J., Swarowsky, A., Cerquera, R. R., Nogueira, C. U., & Maffei, M. (2016). Non-destructive models to estimate leaf area on bell pepper crop. Ciência Rural, 46(11), 1938-1944. doi: 10. 1590/0103-8478cr20151324

Queiroga, J. L., Romano, E. D. U., Souza, J. R. P., & Miglioranza, E. (2003). Estimativa da área foliar do feijão-vagem (Phaseolus vulgaris L.) por meio da largura máxima do folíolo central. Horticultura Brasileira, 21(1), 64-68. doi: 10.1590/S0102-05362003000100013

R Core Team (2020). R: uma linguagem e ambiente para computação estatística. Viena, FR: R Foundation for Statistical Computing.

Richter, G. L., Zanon, A., Jr., Streck, N. A., Guedes, J. V. C., Rocha, T. S. M., Winck, J. E. M., & Cera, J. C. (2014). Estimativa da área de folhas de cultivares antigas e modernas de soja por método não destrutivo. Bragantia, 73(4), 416-425. doi: 10.1590/1678-4499.0179

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R.,... Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília: EMBRAPA.

Schoffel, A., Koefender, J., Camera, J. N., Golle, D. P., & Horn, R. C. (2019). Tamanho de amostra em mudas de Rosmarinus officinalis L. (alecrim) cultivadas em diferentes substratos. Revista Cubana de Plantas Medicinales, 24(2), 1-16.

Schwab, N. T., Streck, N. A., Rehbein, A., Ribeiro, B. S. M. R., Ulhmann, L. O., Langner, J. A., & Becker, C. C. (2014). Dimensões lineares da folha e seu uso na determinação do perfil vertical foliar de gladíolo. Bragantia, 73(2), 97-105. doi: 10.1590/brag.2014.014

Schwerz, F., Caron, B. O., Elli, E. F., Stolzle, J. R., Eloy, E., Schmidt, D., Schwerz, L., & Souza, V. Q. (2017). Greater water availability increases the water use efficiency and productivity of corn and bean species grown in secondary crop systems. Australian Journal of Crop Science, 11(1), 43-49. doi: 10.21 475/ajcs.2017.11.01.pne205

Sinclair, T. R., & Ludlow, M. M. (1986). Influence of soil water supply on the plant water balance of four tropical grain legumes. Australian Journal of Plant Physiology, 13(3), 319-340. doi: 10.1071/PP9860329

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre, RS: Artmed.

Toebe, M., Cargnelutti, A., Fº., Loose, L. H., Heldwein, A. B., & Zanon, A., Jr. (2012). Área foliar de feijão-vagem (Phaseolus vulgaris L.) em função de dimensões foliares. Semina: Ciências Agrárias, 33(1), 2491-2500. doi: 10.5433/1679-0359.2012v33Supl1p2491

Toebe, M., Souza, R. R., Mello, A. C., Melo, P. J., Segatto, A., & Castanha, A. C. A. (2019). Leaf area estimation of squash ‘Brasileirinha’ by leaf dimensions. Ciência Rural, 49(4), 1-11. doi: 10.1590/0103-8478cr20180932

Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S., & Domínguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201(42), 102953. doi: 10.1016/j.earscirev.2019.102953

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184-194. doi: 10.1080/02723 646.1981.10642213

Yuan, S., Peng, S., & Li, T. (2017). Evaluation and application of the ORYZA rice model under different crop managements with high-yielding rice cultivars in central China. Field Crops Research, 212(1), 115-125. doi: 10.1016/j.fcr.2017.07.010

Zambrano-Bigiarini, M. (2020). HydroGOF: goodness-of-fit functions for comparison of simulated and observed hydrological time series. Viena, FR: R Foundation for Statistical Computing.




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n4p2163

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional