Biochemical changes in black oat plants in response to water deficit under different temperatures

Altamara Viviane de Souza Sartori, Carolina Maria Gaspar de Oliveira, Claudemir Zucareli


The black oat (Avena strigosa Schreb.) stands out as a forage of great importance in Brazilian agriculture. However, the productivity and quality of this forage can be affected by abiotic factors, such as temperature and water availability, which affect the physiological processes and facilitate the accumulation of free radicals (reactive oxygen species - ROS). Thus, the objective of this study was to understand the biochemical changes in black oat plants subjected to water deficit at different temperatures. Experiments were conducted in a greenhouse in two experimental periods, which presented an average temperature of 20 °C and 24 °C, respectively. Black oat seeds, of the variety IAPAR 61, were sown in pots and the plants were irrigated for 60 days. After which, the pots were covered with plastic bags and the irrigation was suspended. The analyses were carried out in five periods of evaluation - M1: plants before the suspension of irrigation, M2: plants at the first wilting point, M3: three days after plastic removal and irrigation return, M4: four days after M3 and before the second suspension of irrigation, and M5: the second wilting point. The levels of total protein and malondialdehyde (MDA), and the activity of the enzymes catalase (CAT) and ascorbate peroxidase (APX), were analyzed. The experimental design was completely randomized, with six replications, in a factorial scheme of average temperature × water management × periods of evaluation, and the means were compared by Tukey’s test at 5%. In response to water deficiency and temperature increase, black oat plants increased their levels of total soluble proteins, and there was greater lipid peroxidation due to the increase in malondialdehyde content. There was no change in the activity of the enzymes catalase and ascorbate peroxidase under water deficit, and these activities decreased with increasing temperature.


Avena strigosa Schreb; Antioxidant enzymes; Catalase; Ascorbate peroxidase; Malondialdehyde.

Full Text:



Alves, G., Rodrigues, M., Pereira, J. W. D., Luz, L. N. D., Lima, L., & Santos, R. C. D. (2016). Genotypic variability of peanut lines in response to water stress, based on biochemical descriptors. Revista Caatinga, 29(3), 528-536. doi: 10.1590/1983-21252016v29n302rc

Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B.,… Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(69), 1-12. doi: 10.3389/fpls.2017.00069

Araújo, G. D. N., Jr., Gomes, F. T., Silva, M. J. da, Rosa Jardim, A. M. F. da, Simões, V. J. L. P., Izidro, J. L. P. S.,... Silva, T. G. F. da. (2019). Estresse hídrico em plantas forrageiras: uma revisão. Pubvet, 13(1), 1-10. doi: 10.31533/pubvet.v13n01a241.1-10

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543. doi: 10.1093/jxb/ers100

Avramova, V., Nagel, K. A., Abdelgawad, H., Bustos, D., Duplessis, M., Fiorani, F., & Beemster, G. T. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453-2466. doi: 10.1093/jxb/erw055

Barbosa, M. R., Silva, M. M. A., Willadino, L., Ulisses, C., & Camara, T. R. (2014). Plant generation and enzymatic detoxification of reactive oxygen species. Ciência Rural, 44(3), 453-460. doi: 10.1590/S0103 -84782014000300011

Bianchi, L., Germino, G. H., & Silva, M. A. (2016). Adaptação das plantas ao déficit hídrico. Acta Iguazu, 5(4), 15-32. doi: 10.48075/actaiguaz.v5i4.16006

Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4(273), 1-18. doi: 10.3389/fpls.2013.00273

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1/2), 248-254. doi: 10.1016/0 003-2697(76)90527-3

Carvalho, C. G. P., Ozawa, E. K. M., Amabile, R. F., Godinho, V., Gonçalves, S. L., Ribeiro, J. L., & Seifert, A. L. (2015). Adaptabilidade e estabilidade de genótipos de girassol resistentes a imidazolinonas em cultivos de segunda safra. Revista Brasileira de Ciências Agrárias, 10(1), 1-7. doi: 10.5039/agraria. v10i1a3804

Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. doi: 10.1590/s1415-47572012000600016.

Coelho, C. C. R., Neves, M. G., Oliveira, L. M., Conceição, A. G. C., Okumura, R. S., & Oliveira, C. F., Neto. (2013). Biometria em plantas de milho submetidas ao alagamento. Revista Agroecossistemas, 5(1), 32-38. doi: 10.18542/ragros.v5i1.1408

Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science, 5(151), 1-10. doi: 10.3389/fpls.2014.001 51

Habermann, E., Dias de Oliveira, E. A., Contin, D. R., Delvecchio, G., Viciedo, D. O., Moraes, M. A. de,... Martinez, C. A. (2019). Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum, 165(2), 383-402. doi: 10.1111/ ppl.12891

Hasheminasab, H., Assad, M. T., Aliakbari, A., & Sahhafi, S. R. (2012). Influence of drought stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotypes. Journal of Agricultural Science, 4(8), 20-30. doi: 10.5539/jas.v4n8p20

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi: 10.1016/000 3-9861(68)90654-1

Hendges, F. B., Rambo, C. R., Alcassa, L. P., Liebl, J., Vendruscolo, E. C. G., & Costa, A. (2015). Avaliação enzimática e fisiológica de plântulas de milho submetidas à seca. Revista Brasileira de Energias Renováveis, 4(2), 52-63. doi: 10.5380/rber.v4i2.42287

Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171-178. doi: 10.1016/j.plaphy.2019.03.005

Islam, M. R., Xue, X., Mao, S., Ren, C., Eneji, A. E., & Hu, Y. (2011). Effects of water saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in oat (Avena sativa L.) under drought stress. Journal of the Science of Food and Agriculture, 91(4), 680-686. doi: 10.1002/jsfa. 4234

Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., & Van Der Schrier, G. (2016). Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, 6(1), 1-7. doi: 10.1038/srep33130

Khan, M. H., & Panda, S. K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum, 30(1), 81-89. doi: 10.1007/s117 38-007-0093-7

Khan, Z., & Shahwar, D. (2020). Role of Heat Shock Proteins (HSPs) and heat stress tolerance in crop plants. In Sustainable agriculture in the era of climate change (pp. 211-234). Cham: Springer. doi: 10. 1007/978-3-030-45669-6

Kosar, F., Akram, N. A., Ashraf, M., Ahmad, A., Alyemeni, M. N., & Ahmad, P. (2020). Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiologia Plantarum, 172(2), 1-17. doi: 10.1111/ppl.13155

Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D.,… Mittler, R. (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. Journal of Biological Chemistry, 283(49), 34197-34203. doi: 10.1074/jbc.M806337200

Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2011). Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea ('Cicer arietinum') cultivars. Australian Journal of Crop Science, 5(10), 1255-1260. doi: 10.3316/informit.746357591676684.

Manetti, J., Fº., Oliveira, C. M. G., Caramori, P. H., Nagashima, G. T., & Hernandez, F. B. T. (2018). Cold tolerance of forage plant species. Semina: Ciências Agrárias, 39(4), 1469-1476. doi: 10.5433/1679-035 9.2018v39n4p1469

Marín de la Rosa, N., Lin, C. W., Kang, Y. J., Dhondt, S., Gonzalez, N., Inzé, D., & Falter Braun, P. (2019). Drought resistance is mediated by divergent strategies in closely related Brassicaceae. New Phytologist, 223(2), 783-797. doi: 10.1111/nph.15841

Meena, Y. K., & Kaur, N. (2019). Towards an understanding of physiological and biochemical mechanisms of drought tolerance in plant. Annual Research & Review in Biology, 31(2), 1-13. doi: 10.9734/ARRB/ 2019/v31i230042

Nemati, M., Piro, A., Norouzi, M., Vahed, M. M., Nisticò, D. M., & Mazzuca, S. (2019). Comparative physiological and leaf proteomic analyses revealed the tolerant and sensitive traits to drought stress in two wheat parental lines and their F6 progenies. Environmental and Experimental Botany, 158, 223-237. doi: 10.1016/j.envexpbot.2018.10.024

Nunes, F. H., Jr., Freitas, V. S., Mesquita, R. O., Braga, B. B., Barbosa, R. M., Martins, K., & Gondim, F. A. (2017). Effects of supplement with sanitary landfill leachate in gas exchange of sunflower (Helianthus annuus L.) seedlings under drought stress. Environmental Science and Pollution Research, 24(30), 24002-24010. doi: 10.1007/s11356-017-0047-6

Nxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261-266. doi: 10.1016/j.sajb.2016.11.003


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional