Effects of microbial inoculant and fibrolytic enzymes on fermentation quality and nutritional value of BRS capiaçu grass silage

Mariana Antunes de Jesus, Flávio Pinto Monção, João Paulo Sampaio Rigueira, Vicente Ribeiro Rocha Júnior, Virgílio Mesquita Gomes, Nelson de Abreu Delvaux Junior, Daniel Ananias Assis Pires, Eleuza Clarete Junqueira de Sales, Cinara da Cunha Siqueira Carvalho, Alexandre Soares dos Santos


The objective of this study was to evaluate the effect of bacterial-enzymatic inoculants with different concentrations of fibrolytic enzymes on the fermentation quality and nutritional value of the silage of BRS capiaçu grass. Two bacterial-enzymatic inoculants with different levels of enzyme complex were evaluated (Silotrato® (5%) and Biotrato® (8%)) and control silage (without additive) according to a completely randomized design with eight replicates. To evaluate the silage aerobic stability, a completely randomized split plot design was used with three treatments (plots) and seven times after opening (subplots). There was no interaction between treatments and times after opening on values of pH (P=0.79). Regarding bacterial-enzymatic inoculants, the silage pH was 21.66% and 16.16% higher in silage without additive (mean of 6.00) compared to silage with 5% and 8% enzyme complex (P < 0.01). There was no difference between treatments on pH (P = 0.08), lactic acid (p = 0.08) and acetic acid (p = 0.64), means of 3.11, 47.31 g dry matter (DM)-1 and 11.19 g DM-1, respectively. There was no difference between treatments for any of the chemical composition variables (P = 0.86). Mean values for DM, crude protein, neutral detergent fiber and total digestible nutrients were 22.31%, 6.65%, 71.15% and 42.07%, respectively. There was a higher concentration of butyric acid in the control silage compared to Silotrato® silage. The control silage and silage treated with Biotrato® presented effluent losses (P = 0.05) 13.99% higher than silage with Silotrato®. For ensiling BRS capiaçu grass, it is recommended to use lactic acid bacteria containing 5% fibrolytic enzymes.


Inoculant; Aerobic stability; Digestibility; Indigestible fiber.

Full Text:



Amaral, R. C., Carvalho, B. F., Costa, D. M., Morenz, M. J. F., Schwan, R. F., & Ávila, C. L. S. (2020). Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS capiaçu. Animal Feed Science and Technology, 264(1), 1-12.doi: 10.1016/j.anifeedsci.2020.114472

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018).Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(1), 3952-3979. doi:10.3168/jds.2017-13837

Bureenok, S., Langsoumechai, S., Pitiwittayakul, N., Yuangklang, C., Vasupen, K., Saenmahayak, B., &Schonewille, J. T. (2019). Effects of fibrolytic enzymes and lacticacid bacteria on fermentation quality and in vitro digestibility of Napier grass silage. Italian of Journal Animal Science, 18(1), 1438-1444. doi: 10.1080/1828051X.2019.1681910

Chung, Y. H., Zhou, M., Holtshausen, L., Alexander, T. W., McAllister, T. A., Guan, L. L.,...Beauchemin, K. A. (2012). A fibrolytic enzyme additive for lactating Holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions. Journal of Dairy Science, 95(3), 1419-1427. doi: 10.3168/jds.2011-4552

Colombatto, D., Mould, F. L., Bhat, M. K., Phipps, R. H., & Owen, E. (2004).In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage.Animal Feed Science and Technology, 111(1), 111-128. doi: 10.1016/j.anifeedsci.2003.08.011

Desta, S. T., Yuan, X., Li, J., & Shao, T. (2016). Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of napier grass ensiled with additives. Bioresource Technology, 221(9), 447-454.doi: 10.1016/j.biortech.2016.09.068

Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S.,... Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco, MG: Suprema.

Detmann, E.,Valente, E. E. L., Batista, E. D., & Huhtanen, P. (2014). An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livestock Science, 162(1), 141-153.doi: 10.1016/j.livsci.2014.01.029

Jobim, C. C., Nussio, L. G., Reis, R. A., & Schmidt, P. (2007). Avanços metodológicos na avaliação da qualidade de forragem conservada. Revista Brasileira de Zootecnia, 36(1), 101-119. doi: 10.1590/S15 16-35982007001000013

Khota, W., Pholsen, S., Higgs, D., & Cai, Y. (2016). Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulose and inoculant. Journal of Dairy Science, 99(12), 9768-9781. doi: 10.3168/jds.2016-11180

Khota, W., Pholsen, S., Higgs, D., &Cai, Y. (2017). Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian-AustralasianJournalof Animal Sciences, 30(11), 1568-1574. doi: 10.5713/ajas.16.0502

Kung, L., Jr.,Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018).Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(1), 4020-4033. doi: 10.3168/jds.2017-13909

Li, M., Zhou, H., Zi, X., & Cai, Y. (2017). Silage fermentation and ruminal degradation of stylo prepared with lacticacid bacteria and cellulase. Animal Science Journal, 88(10), 1531-1537. doi: 10.1111/asj.127 95

Monção, F. P., Costa, M. A. M. S., Rigueira, J. P. S., Moura, M. M. A., Rocha, V. R., Jr.,Mesquita, V. G.,... Chamone, J. M. A. (2019a). Yield and nutritional value of BRS Capiaçu grass at different regrowth ages. Semina: Ciências Agrárias, 41(5), 745-755. doi: 10.5433/1679-0359.2019v40n5p2045

Monção, F. P., Costa, M. A. M. S., Rigueira, J. P. S., Sales, E. C. J.,Leal, D. B., Silva, M. F. P.,... Rocha, V. R., Jr.(2019b). Productivity and nutritional value of BRS capiaçu grass (Pennisetum purpureum) managed at four regrowth ages in a semiarid region. Tropical Animal Health and Production, 52(1), 235-241. doi: 10.1007/s11250-019-02012-y

National Research Council (2001).Nutrient requirements of dairy cattle (7nd rev. ed.).Washington, DC: National Academy Press.

Noel, R. J. & Hambleton, L. G. (1976). Collaborative study of a semiautomated method for determination of crude protein in animal feeds. Journal of the AOAC, 59(1)134-140.

Pereira, A. V., Lédo, F. J. S., & Machado, J. C. (2017). BRS Kurumi and BRS capiaçu - new elephant grass cultivars for grazing and cut-and-carry system. Crop Breeding and Applied Biotechnology, 17(1), 59-62. doi: 10.1590/1984-70332017v17n1c9

Pryce, J. D. (1969). A modification of Barker-Summerson method for the determination of lactic acid.Analyst, 94(1), 1151-1152. doi: 10.1039/AN9699401151

Ruppel, K. A., Pitt, R. E., Chase, L. E., & Galton, D. M. (1995).Bunker silo management and its relationship to forage preservation on dairy farms. JournalofDairy Science, 78(1), 141-153. doi: 10.3168/jds.S0022-0302(95)76624-3

Sun, Q., Gao, F., Yu, Z.,Tao, Y., Zhao, S., & Cai, Y. (2012). Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulose additives. Animal Science Journal, 83(4), 305-309. doi: 10.1111/j.1740-0929.2011.00962.x

Tian, J.,Yu, Y., Yu, Z., Shao, T., Na, R., & Zhao, M. (2014). Effects of lactic acid bacteria inoculants and cellulose on fermentation quality and in vitro digestibility of Leymuschinensis silage.Grassland Science, 60(4), 199-205. doi: 10.1111/grs.12059

Tilley, J. M. A., & Terry, R. A. (1963).A two-stage technique for the in vitro digestion of forage crops.Journal of the British Grassland Society, 18(2), 104-111. doi: 10.1111/j.1365-2494.1963.tb0033 5.x

Valente, T. N. P., Detmann, E.,Queiroz, A. C., Valadares, S. C., Fº., Gomes, D. I., & Filgueiras, J. F. (2011). Evaluation of rumen degradation profiles of forages using bags made from different textiles. RevistaBrasileira de Zootecnia, 40(11), 2565-2573. doi: 10.1590/S1516-35982011001100039

Wang, S., Guo, G., Li, J., Chen, L., Dong, Z., & Shao, T. (2019).Improvement of fermentation profile and structural carbohydrate compositions in mixed silages ensiled with fibrolytic enzymes, molasses and Lactobacillus plantarum MTD1. Italian Journal of Animal Science, 18(1), 328-335. doi: 10.1080/1828 051X.2018.1528899

Zhang, Q., Li, X., Zhao, M., & Yu, Z. (2016). Lactic acid bacteria strains for enhancing the fermentation quality and aerobic stability of Leymuschinensis silage. Grass and Forage Science, 71(3), 472-481. doi: 10.1111/gfs.12190

DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p1837

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional