Evaluation of antioxidants on oxidative stability and fatty acid profile of poultry offal oil used in the pet food industry

Carlos Magno da Rocha Junior, Antônio Gilberto Bertechini, Alexandre de Oliveira Teixeira, Leonardo Marmo Moreira, Carla Regina Guimarães Brighenti, Cristina Maria Lima Sá-Fortes, Cleiton Antônio Nunes, Anderson Corassa


The current study aimed to evaluate the use of antioxidants on the oxidative stability of poultry oil used in the pet food industry. Five synthetic commercial antioxidants and two natural ones were used: Control (CON); CON + (BHT+BHA+ETO95); CON + (BHT+BHA); CON + (BHA+PG+AC); CON + (BHT+BHA+ETO70); CON + BHA; CON + (ASC+ Rosemary); CON + (ASC+ Tocopherols)). The inclusion was 0.5% for synthetics antioxidants and 0.625% for natural antioxidants. The determination of oxidative stability was done in three temperatures (90 ° C, 110 ° C and 130 ° C). For the determination of the fatty acid profile, the original sample of the poultry oil was considered as a negative control. The determination of the fatty acids was based on the preparation of the methyl esters by transesterification reaction with methanol in an alkaline medium, followed by analysis by gas chromatography. The identification of the different fatty acids was obtained by comparing the retention times of standards of fatty acid methyl ester with retention times of peaks observed. An analysis of compositional data was performed. It was possible to observe that, without using a reliable antioxidant, the induction time is shorter, resulting in a lower oxidative stability of the viscera oil, with consequent loss of its quality, due to less time spent to oxidize. The antioxidants used in CON + (BHT + BHA + ETO95), CON + (BHA + PG + AC) and CON + BHA, preserved more essential fatty acids (linolenic and linoleic). Natural antioxidants had higher oxidation, with higher proportions of saturated fatty acids and the worst ?6: ?3 ratios. It is concluded that the synthetic antioxidants used in CON + (BHT + BHA + ETO95), CON + (BHA + PG + AC) and CON + BHA provided greater protection against oxidation and better preserved essential fatty acids. Natural antioxidants, in the present study, did not present satisfactory protection.


Antioxidants; Extrusion; Pet food; Rosemary; Tocopherols.

Full Text:



American Oil Chemists’ Society (2009). Preparation of methyl esters of fatty acids. Method Ce 2-66, Seccion C. Official Methods and Recommended Practices of the American Oil Chemists’ Society (6th ed.). Urbana, Illinois, USA: AOCS.

Araújo, J. M. A. (2015). Química de alimentos: teoria e prática (6th ed.). Viçosa: Editora UFV.

Araújo, W. A. G., Rostagno, H. S., Albino, L. F. T., Carvalho, T. A., & Birro, T. (2010). Vitamina E na Nutrição Animal. Nutritime, 7(4), 1292-1303. Retrieved from: https://www.nutritime.com.br/site/artigo-118-vitamina-e-na-nutricao-animal/

Bonomo, A. V., Sanhueza, J., & Nieto, S. (2003). Natural antioxidants in functional foods: from food safety to health benefits. Grasas y Aceites, 54(3), 295-303. doi: 10.3989/gya.2003.v54.i3.245.

Durmaz, G., & Gökmen, V. (2019). Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Research International, 116, 586-591. doi: 10.1016/j.foodres.2018.08.077

Haverkamp, M. (2020). Shelf life and quality of minimally processed pet foods and pet food ingredients. Manhattan, Kansas: Kansas State University. Retrieved from https://hdl.handle.net/2097/40632

Hernández, A., García García, B., Jordán, M. J., & Hernández, M. D. (2014). Natural antioxidants in extruded fish feed: Protection at different storage temperatures. Animal Feed Science and Technology, 195, 112-119. doi: 10.1016/j.anifeedsci.2014.06.003

Hu, R., Dunmire, K. M., Truelock, C. N., Paulk, C. B., Aldrich, G., & Li, Y. (2020). Antioxidant performances of corn gluten meal and DDGS protein hydrolysates in food, pet food, and feed systems. Journal of Agriculture and Food Research, 2, 100030. doi: 10.1016/j.jafr.2020.100030

Miladi, H., Slama, R. B., Mili, D., Zouari, S., Bakhrouf, A., & Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities ag. Natural Science, 5(6), 729-739. doi: 10.4236/ns.2013.56090

Monti, M., Gibson, M., Loureiro, B. A., Sá, F. C., Putarov, T. C., Villaverde, C.,... Carciofi, A. C. (2016). Influence of dietary fiber on macrostructure and processing traits of extruded dog foods. Animal Feed Science and Technology, 220(2016), 93-102. doi: 10.1016/j.anifeedsci.2016.07.009

National Research Council (2006). Nutrient requirements of dogs and cats. Washington, DC: The National Academies Press.

Oliveira, A. C. de, Valentim, I. B., Goulart, M. O. F., Silva, C. A., Bechara, E. J. H., & Trevisan, M. T. S. (2009). Fontes vegetais naturais de antioxidantes. Química Nova, 32(3), 689-702. doi: 10.1590/S0100-40422009000300013

Pacheco, P. D. G., Putarov, T. C., Baller, M. A., Peres, F. M., Loureiro, B. A., & Carciofi, A. C. (2018). Thermal energy application on extrusion and nutritional characteristics of dog foods. Animal Feed Science and Technology, 243, 52-63. doi: 10.1016/j.anifeedsci.2018.07.003

Racanicci, A. M. C., Menten, J. F. M., Regitano-D’Arce, M. A. B., Gaiotto, J. B., Longo, F. A., Pedroso, A. A., & Sorbara, J. O. B. (2004). Oxidação lipídica do óleo de vísceras de aves para redução de seu conteúdo de energia metabolizável para frangos de corte na fase de crescimento. Revista Brasileira de Zootecnia, 33(4), 919-923. doi: 10.1590/S1516-35982004000400012

Ribeiro, L. B., Bankuti, F. I., Silva, M. U. da, Ribeiro, P. M., Silva, J. M., Sato, J.,... Vasconcellos, R. S. (2019). Oxidative stability and nutritional quality of poultry by-product meal: an approach from the raw material to the finished product. Animal Feed Science and Technology, 255(2018), 114226. doi: 10.10 16/j.anifeedsci.2019.114226

Tan, C. H., Ariffin, A. A., Ghazali, H. M., Tan, C. P., Kuntom, A., & Choo, A. C. Y. (2017). Changes in oxidation indices and minor components of low free fatty acid and freshly extracted crude palm oils under two different storage conditions. Journal of Food Science and Technology, 54(7), 1757-1764. doi: 10.1007/s13197-017-2569-9

Van den Boogaart, K. G., & Tolosana-Delgado, R. (2008). “Compositions”: a unified R package to analyze compositional data. Computers & Geosciences, 34(4), 320-338. doi: 10.1016/j.cageo.2006.11.017

Ye, L., Pham-Mondala, A., Li, J., Joseph, P., Nahas, R., & Michel-Salaun, F. (2019). Using confocal microscopy to estimate the distribution of natural antioxidants in poultry meal and extruded kibbles. European Journal of Lipid Science and Technology, 121(9), 1-7. doi: 10.1002/ejlt.201800374

DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p1813

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional