SO2-generating pads reduce gray mold in clamshell-packaged ‘Rubi’ table grapes grown under a two-cropping per year system

Débora Thaís Mühlbeier, Luana Tainá Ribeiro, Maíra Tiaki Higuchi, Youssef Khamis, Osmar José Chaves Junior, Renata Koyama, Sergio Ruffo Roberto


The aim of this work was to evaluate different SO2-generating pads and liners to control gray mold in ventilated clamshell-packaged ‘Rubi’ table grapes grown under a two-cropping per year system. The treatments consisted of SO2-generating pads (slow release or dual release) and plastic liners with different perforations (microperforated; 2.0; 4.0 or 5.0 mm in diameter) and a control, only with the standard microperforated plastic liner. The packaged grapes were stored in a cold chamber at 1.0 ± 1.0 °C and 95% relative humidity. After 45 days, the grapes were removed from cold storage and placed, without liners and SO2-generating pads, for 3 days at room temperature (22.0 ± 1.0 °C). The evaluations occurred at 30 and 45 days after the beginning of cold storage, and the following variables were assessed: incidence of gray mold, mass loss, stem browning and shattered berries. At 3 days of shelf-life, the same variables were assessed, except mass loss. The completely randomized design was used as a statistical model with four replications, and each plot consisted of five bunches individually stored in ventilated clamshell-packaged. The dual release SO2-generating pads are efficient in controlling the gray mold in ‘Rubi’ table grapes regardless of the type of perforation of the plastic liners, with low mass loss and shattered berries, with good conservation of the freshness of the rachis. The disease was efficiently controlled in both annual crops. The slow-release SO2-generating pads, regardless of the type of perforation of the plastic liners, resulted in intermediate efficiency of gray mold control, with good physical quality of the bunches. Thus, the use of dual release SO2-generating pads is recommended to control gray mold in ventilated clamshell-packaged ‘Rubi’ table grapes.


Botrytis cinerea Pers; Cold storage; Packing; SO2; Vitis vinifera L.

Full Text:



Ahmed, S., Roberto, S. R., Domingues, A. R., Shahab, M., Chaves, O. J., Jr., Sumida, C. H., & Souza, R. T. de. (2018). Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ Table grapes under cold storage. Horticulturae, 4(4), 29-41. doi: 10.3390/horticulturae4040029

Boersig, M. R., Hartsell, P., & Smilanick, J. (2003). Penetration and sorption of methyl bromide in returnable plastic containers. HortTechnology, 13(1), 141-143. doi: 10.21273/horttech.13.1.0141

Bulit, J., & Dubos, B. (1990). Botrytis bunch rot and blight. In R. C. Pearson, A. C. Goheen (Eds.), Compendium of grape diseases (pp. 13-15). Rockville, MD, USA: St. Paul: APS Press.

Celik, M., Kalpulov, T., Zutahy, Y., Ish-shalom, S., Lurie, S., & Lichter, A. (2009). Quantitative and qualitative analysis of Botrytis inoculated on table grapes by qPCR and antibodies. Postharvest Biology and Technology, 52(2), 235-239. doi: 10.1016/j.postharvbio.2008.10.007

Champa, W. H. (2015). Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). Journal of the National Science Foundation of Sri Lanka, 43(1), 3-9. doi: 10.4038/jnsfsr.v43i1.7921

Chaves, O. J., Jr., Youssef, K., Koyama, R., Ahmed, S., Domingues, A. R., Mühlbeier, D. T., & Roberto, S. R. (2019). Control of gray mold on clamshell-packaged ‘Benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens, 8(4), 271-284. doi: 10.3390/pathogens8040271

Chervin, C., Aked, A., & Crisosto, C. H. (2012). Grapes. In D. Ress, G. Farrell, & J. Orchard, Crop post-harvest: science and technology (3nd ed., pp. 187-211). Oxford, UK: Blackwell Publishing Ltd.

Cia, P., Benato, E. A., Valentini, S. R. de T., Sanches, J., Ponzo, F. S., Flôres, D., & Terra, M. M. (2010). Atmosfera modificada e refrigeração para conservação pós-colheita de uva 'Niagara Rosada'. Pesquisa Agropecuária Brasileira, 45(10), 1058-1065. doi: 10.1590/S0100-204X2010001000002

Crisosto, C. H., Smilanick, J. L., Dokoozlian, N. K., & Luvisi, D. A. (1994). Maintaining table grape post-harvest quality for long distant markets. Proceeding of the International Symposium on Table Grape Production, Anaheim, California, USA.

Domingues, A. R., Roberto, S. R., Ahmed, S., Shahab, M., Chaves, O. J., Jr., Sumida, C. H., & Souza, R. (2018). Postharvest techniques to prevent the incidence of Botrytis mold of ‘BRS Vitoria’ seedless grape under cold storage. Horticulturae, 4(3), 17-27. doi: 10.3390/horticulturae4030017

Droby, S., & Lichter, A. (2004). Post-harvest botrytis infection: etiology development and management. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: biology, pathology and control (pp. 349-367). London: Springer.

Elad, Y., Vivier, M., & Fillinger, S. (2015). Botrytis: the good, the bad and the ugly. In S. Fillinger, Y. Elad, M. Vivier (Eds.), Botrytis - the fungus, the pathogen and its management in agricultural systems (pp. 1-15). Heidelberg, Germany: Springer.

Fernández-Trujillo, J. P., Obando-Ulloa, J. M., Baró, R., & Martínez, J. A. (2008). Quality of two table grape guard cultivars treated with single or dual-phase release SO2 generators. Journal of Applied Botany and Food Quality, 82(2), 1-8.

Food and Drug Administration (2003). Sulfites: an important food safety issue. Retrieved from http://vm.

Gabler, F. M., Mercier, J., Jiménez, J. I., & Smilanick, J. L. (2010). Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 55(2), 78-84. doi: 10.1016/j. postharvbio.2009.07.012

Gomes, D., Ferraz, A. C. O., & Cipolli, K. M. V. A. B. (2013). Avaliação da degrana e rompimento de bagas da uva Niagara Rosada observada pelos consumidores. Revista Brasileira de Viticultura e Enologia, 5(5), 26-33.

Gorgatti, A., Netto, Gayet, J., Bleinhot, E., Matallo, M., Garcia, H., Garcia, A., & Bordin, M. (1993). Uva para exportação: procedimentos de colheita e pós-colheita. Brasília: EMBRAPA-SPI FRUPEX (2).

Harvey, J. M., Harris, C. M., Hanke, T. A., & Hartsell, P. L. (1988). Sulfur dioxide fumigation of table grapes: relative sorption of SO2 by fruit and packages, SO2 residues, decay, and bleaching. American Journal of Enology and Viticulture, 39(2), 132-136.

Hashim, A. F., Youssef, K., & Abd-Elsalam, K. A. (2019). Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. European Journal of Plant Pathology, 154(2), 377-388. doi: 10.1007/s10658-018-01662-2

Henríquez, J. L., & Pinochet, S. (2016). Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Horticulturae, 1144, 267-272. doi: 10.17660/ActaHortic. 2016.1144.39

Instituto das Águas do Paraná (2017). Sistema de informações hidrológicas. Recuperado de

Karaca, H., & Smilanick, J. L. (2011). The influence of plastic composition and ventilation area on ozone diffusion through some food packaging materials. Postharvest Biology and Technology, 62(1), 85-88. doi: 10.1016/j.postharvbio.2011.04.004

Kishino, A. Y., Marur, C. J., & Roberto, S. R. (2019). Características da planta. Variedades-copa e porta-enxertos. In A. Y. Kishino, S. L. C. de Carvalho, & S. R. Roberto (Eds.), Viticultura tropical: o sistema de produção de uvas de mesa do Paraná (pp. 201-249). Londrina, PR: IAPAR.

Leesch, J. G., Smilanick, J. L., & Tebbets, J. S. (2008). Methyl bromide fumigation of packed table grapes: effect of shipping box on gas concentrations and phytotoxicity. Postharvest Biology and Technology, 49(2), 283-286. doi: 10.1016/j.cropro.2014.05.002

Lichter, A., Zutahy, Y., Kaplunov, T., & Lurie, S. (2008). Evaluation of table grapes storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. HortTechnology, 18(2), 206-214. doi: 10.21273/horttech.18.2.206

Liguori, G., Sortino, G., Pasquale, C. de, & Inglese, P. (2015). Effects of modified atmosphere packaging on quality parameters of minimally processed table grapes during cold storage. Advances in Horticultural Science, 29(3), 152-154. doi: 10.13128/ahs-22696

Mansour, K. M., El-Tobshy, Z. M., Nelson, K. E., & Fahmy, B. A. (1984). Effect of in-package SO2-generator on postharvest decay and quality of Banati grapes. Egyptian Journal of Horticulture, 11(1), 11-18.

Mattiuz, B.-H., Miguel, A. C. A., Galati, V. C., & Nachtigal, J. C. (2009). Efeito da temperatura no armazenamento de uvas apirênicas minimamente processadas. Revista Brasileira de Fruticultura, 31(1), 44-52. doi: 10.1590/S0100-29452009000100008

Mattiuz, B.-H., Miguel, A. C. A., Nachtigal, J. C., Durigan, J. F., & Camargo, U. A. (2004). Processamento mínimo de uvas de mesa sem sementes. Revista Brasileira de Fruticultura, 26(2), 226-229. doi: 10. 1590/S0100-29452004000200011

Melgarejo-Flores, B. G., Ortega-Ramírez, L. A., Silva-Espinoza, B. A., González-Aguilar, G. A., Miranda, M. R. A., & Ayala-Zavala, J. F. (2013). Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil. Postharvest Biology and Technology, 86(1), 321-328. doi: 10.1016/j.postharvbio.2013.07.027

Michailides, T. J., & Elmer, P. A. G. (2000). Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Disease, 84(3), 208-223. doi: 10.1094/pdis.2000.84.3.208

Muñoz, V., Benato, E. A., Sigrist, J. M. M., Oliveira, J. D. V., & Corrêa, A. C. C. (2000). Effect of SO2 for controlling Botrytis cinerea in Italia and Red Globe grapes stored at different temperatures. Revista Brasileira de Fruticultura, 22 (Especial Edition), 100-105.

Mustonen, H. M. (1992). The efficacy of a range of sulfur dioxide generating pads against Botrytis cinerea infection & on out-turn quality of Calmeria table grapes. Australian Journal of Experimental Agriculture, 32(3), 389-393. doi: 10.1071/EA9920389

Nelson, K. E. (1983). Effects of in-package sulfur dioxide generators, package liners, and temperature on decay and desiccation of table grapes. American Journal of Enology and Viticulture, 34(1), 10-16.

Ngcobo, M. E. K., Opara, U. L., & Thiart, G. D. (2011). Effects of packaging liners on cooling rate and quality attributes of table grape (cv. Regal Seedless). Packaging Technology and Science, 25(2), 73-84. doi: 10.1002/pts.961

Palou, L., Crisosto, C. H., Garner, D., Basinal, L. M., Smilanick, J. L., & Zoffoli, J. P. (2002). Minimum constant sulfur dioxide emission rates to control gray mold of cold stored table grapes. American Journal of Enology and Viticulture, 53(2), 110-115.

Palou, L., Serrano, M., Martínez-Romero, D., & Valero, D. (2010). New approaches for postharvest quality retention of table grapes. Fresh Produce, 4(1), 103-110.

Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2008). Management of air quality monitoring using principal component and cluster analysis Part I: SO2 and PM10. Atmospheric Environment, 42(6), 1249-1260. doi: 10.1016/j.atmosenv.2007.10.044

Romanazzi, G., Lichter, A., Gabler, F. M., & Smilanick, J. L. (2012). Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 63(1), 141-147. doi: 10.1016/j.postharvbio.2011.06.013

Saito, S., & Xiao, C. L. (2017). Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries. Proceedings of the XI International Vaccinium Symposium, Orlando, Flórida, Estados Unidos, 1180. doi: 10.17660/ActaHortic.2017.11 80. 17

Salem, E. A., Youssef, K., & Sanzani S. M. (2016). Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Scientia Horticulturae, 198, 86-90. doi: 10.1016/j.scienta.2015.11.013

Silva-Sanzana, C., Balic, I., Sepúlveda, P., Olmedo, P., León, G., Defilippi, B. G., Campos-Vargas, R. (2016). Effect of modified atmosphere packaging (MAP) on rachis quality of ‘Red Globe’ table grape variety. Postharvest Biology and Technology, 119, 33-40. doi: 10.1016/j.postharvbio.2016.04.021

Smilanick, J. L., Harvey, J. M., Hartsell, P. L., Hensen, D. J., Harris, C. M., Fouse, D. C., & Assemi, M. (1990). Factors influencing sulfite residues in table grapes after sulfur dioxide fumigation. American Journal of Enology and Viticulture, 41(2), 131-136.

Smilanick, J. L., Mansour, M. F., Gabler, F. M., Margosan, D. A., & Hashim-Buckey, J. (2010). Control of postharvest gray mold of table grapes in the San Joaquin Valley of California by fungicides applied during the growing season. Plant Disease, 94(2), 250-257. doi: 10.1094/PDIS-94-2-0250

Tessmann, D. J., Vida, J. B., Genta, W., Roberto, S. R., & Kishino, A. Y. (2019). Doenças e seu manejo. In A. Y. Kishino, S. L. C. de Carvalho, & S. R. Roberto (Eds.), Viticultura tropical: o sistema de produção de uvas de mesa do Paraná (pp. 453-548). Londrina, PR: IAPAR.

Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. doi: 10.1111/j.1364-3703.2007.00417.x

Yamashita, F., Tonzar, A. C., Fernandes, J. G., Moriya, S., & Benassi, M. D. T. (2000). Influência de diferentes embalagens de atmosfera modificada sobre a aceitação de uvas finas de mesa var. Itália mantidas sob refrigeração. Ciência e Tecnologia de Alimentos, 20(1), 110-114. doi: 10.1590/S0101-206 12000000100021

Youssef, K., Chaves, O. J., Jr., Mühlbeier, D. T., & Roberto, S. R. (2020). Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell packaged ‘BRS Nubia’ seeded table grapes grown under protected cultivation. Horticulturae, 6(2), 20-28. doi: 10.3390/horticulturae6020020

Youssef, K., Oliveira, A. G. de, Tischer, C. A., Hussain, I., & Roberto, S. R. (2019). Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules, 141, 247-258. doi: 10.10 16/j.ijbiomac.2019.08.249

Youssef, K., & Roberto, S. R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biology and Technology, 87(1), 95-102. doi: 10.1016/j.postharvbio.2013.08.011

Zagory, D., & Kader, A. A. (1988). Modified atmosphere packaging of fresh produce. Food Technology, 42(9), 70-77.

Zoffoli, J. P., & Latorre, B. A. (2011). Table grapes: (Vitis vinifera L.). In E. Yahia, Postharvest biology and technology of tropical and subtropical fruits: Coco to mango (pp. 179-207). Cambridge: Woodhead Publishing.

Zutahy, Y., Lichter, A., Kaplunov, T., & Lurie, S. (2008). Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads. Postharvest Biology and Technology, 50(1), 12-17. doi: 10.1016/j. postharvbio.2008.03.006


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional