Preconsolidation stress of gibbsitic and kaolinitic Oxisols under a multipractice conservationist coffee system

Carla Eloize Carducci, Geraldo César de Oliveira, Walmes Marques Zeviani, Henrique Aparecido Laureano, Samara Martins Barbosa, Eduardo da Costa Severiano, Nilton Curi

Abstract


Our goal was to analyze the impact of a multipractice soil conservationist system on coffee production in tropical soils (LATOSSOLO VERMELHO-AMARELO caulinítico/kaolinitic Haplustox and LATOSSOLO VERMELHO-gibbsítico/gibbsitic Acrustox soils) in Minas Gerais, Brazil. In the experimental area, the soil management involved a set of multiple conservationist practices during cultivation for more than 3.5 yrs. Soil samples were collected at 0-5, 10-15, and 20-25 cm depths at two positions: within planting rows and between rows. The soil physical and mechanical properties were determined, with a focus mainly on the preconsolidation stress model (preconsolidation stress versus matric tension). For the purpose of analysis, a split-split plot experimental design was implemented. A linear mixed regression (LMR) model was fitted, and Wald’s test was performed (P < 0.05). An improvement of soil physical quality for both Oxisols was observed at the planting row position. The effects of multipractice soil management after 3.5 yrs of cultivation in association with increased gibbsite content could promote new soil structure organization, as revealed by LMR, resulting in more resilient soils (between rows) and increasing the resistance to external pressures on gibbsitic Acrustox soils. Overall, the findings herein are in concordance with global trends towards conservationist practices that may alleviate soil compaction in agricultural systems to maintain environmental sustainability.

Keywords


Agricultural gypsum; Gibbsite; Kaolinite; Linear mixed regression model; Soil compaction.

Full Text:

PDF

References


Ajayi, A. E., Dias, M. S., Jr., Curi, N., Araujo, C. F., Jr., Souzam, T. T. T., & Inda, A. V., Jr. (2009a). Strength attributes and compaction susceptibility of Brazilian Latosols. Soil & Tillage Research, 105(1), 122-127. doi: 10.1016/j.still.2009.06.004

Ajayi, A. E., Dias, M. S., Jr., Curi, N., Gontijo, I., Araújo, C. F., Jr., & Vasconcelos, A. I., Jr. (2009b). Relation of strength and mineralogical attributes in Brazilian Latosols. Soil & Tillage Research, 102(1), 14-18. doi: 10.1016/j.still.2008.05.013

Ajayi, A. E., Dias, M. S., Jr., Curi, N., Okunola, A., Souza, T. T. T., & Pires, B. S. (2010). Assessment of vulnerability of Oxisols to compaction in the Cerrado region of Brazil. Pedosphere, 20(2), 252-260. doi: 10.1016/S1002-0160(10)60013-6

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalvez, J. L. M., & Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/ 0507

An, J., Zhang, Y., & Yu, N. (2015). Quantifying the effect of soil physical properties on the compressive characteristics of two arable soils using uniaxial compression tests. Soil & Tillage Research, 145(1), 216-223. doi: 10.1016/j.still.2014.09.002

Andrade, M. L. C., Tassinari, D., Dias, M. S., Jr., Martins, R. P., Rocha, W. W., & Souza, Z. R. (2017). Soil compaction caused by harvest and logging operations in eucalyptus forests in coarse-textured soils from northeastern Brazil. Ciência e Agrotecnologia, 41(2), 191-200. doi: 10.1590/1413-70542017412036216

Barbosa, S. M., Silva, B. M., Oliveira, G. C., Benevenute, P. A. N., Silva, R. F., Curi, N.,... Pereira, V. M. (2020). Deep furrow and additional liming for coffee cultivation under first year in a naturally dense Inceptisol. Geoderma, 357(1), 113934. doi: 10.1016/j.geoderma.2019.113934

Bengouch, A. G., & Mullins, C. E. (1990). Mechanical impedance to root growth: a review of experimental techniques and root growth responses. European Journal of Soil Science, 41(3), 341-358. doi: 10.1111/j. 1365-2389.1990.tb00070.x

Bernardes, T., Moreira, M. A., Adami, M., Giarolla, A., & Rudorff, B. F. T. (2012). Monitoring biennial bearing effect on coffee yield using MODIS Remote Sensing Imagery. Remote Sensing, 4, 2492-2509. doi: 10.1109/IGARSS.2012.6350499

Blake, G. R., & Hartge, K. H. (1986). Partycle density. In A. Klute (Ed.), Methods of soil analysis (2nd ed.), American Society of Agronomy, Agronomy Monographs 9(1). Methods of soil analysis, Madison, Wisconsin (pp. 377-382).

Bonetti, J. A., Anghinoni, I., Moraes, M. T., & Fink, J. R. (2017). Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil & Tillage Research, 174, 104-112. doi: 10.1016/j.still.2017.06.008

Carducci, C. E., Oliveira, G. C., Curi, N., Heck, R. J., & Rossoni, D. F. (2014). Scaling of pores in 3D images of Latosols (Oxisols) with contrasting mineralogy under a conservation management system. Soil Research, 52(3), 231-243. doi: 10.1071/SR13238

Carducci, C. E., Oliveira, G. C., Curi, N., Heck, R. J., Rossoni, D. F., Carvalho, T. S. de, & Costa, A. L. (2015). Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil & Tillage Research, 145(1), 171-180. doi: 10.1016/j.still.2014.09.015

Carducci, C. E., Oliveira, G. C., Zeviani, W. M., Lima, V. M. P., & Serafim, M. E. (2013). Bimodal pore distribution on soils under conservation management system for coffee crop. Engenharia Agrícola, 33(2), 291-302. doi: 10.1590/S0100-69162013000200008

Companhia Nacional de Abastecimento (2020). Acompanhamento da safra brasileira Café safra 2020, primeiro levantamento. Recuperado de https://www.conab.gov.br/info-agro/safras/cafe

Danielson, R. E., & Sutherland, P. L. (1986). Porosity. Methods of soil analysis: Part 1 physical and mineralogical methods, (2nd ed.). In: A. Klute (Ed.), American Society of Agronomy, Agronomy Monographs 9(1). Methods of soil analysis, Madison, Wisconsin (pp.443-461).

Day, P. R. (1965). Particle fractionation and particle size analysis. In: C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, F. E. Clark (Eds.), Methods of soil analysis. Madison, Wisconsin (pp. 545-567).

Dexter, A. R., & Richard, G. (2009). Tillage of soils in relation to their bi-modal pore size distributions. Soil & Tillage Research, 103(1), 113-118. doi: 10.1016/j.still.2008.10.001

Dias, M. S., Jr., & Pierce, F. J. (1995). A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technology, 8(2), 139-151. doi: 10.1016/0933-3630(95)00015-8

Eliasson, L. (2005). Effects of forwarder tyre pressure on rut formation and soil compaction. Silva Fennica, 39(4), 549-557. doi: 10.14214/sf.366

Ferreira, C. J. B., Tormena, C. A., Severiano, E. C., Zotarelli, L., & Bertiolo, E., Jr. (2020). Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, 1(1), 1-14. doi: 10.1080/03650340.2020.1733535

Flávio, J., Neto, Severiano, E. C., Costa, K. A. P., Guimarães Junnyor, W. S., Gonçalves, W. G., & Andrade, R. (2015). Biological soil loosening by grasses from genus Brachiaria in croplivestock integration. Acta Scientiarum: Agronomy, 37(3), 375-383. doi: 10.4025/actasciagron.v37i3.19392

Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44(5), 892-898. doi: 10.2136/sssaj1980.036159950044 00050002x

Götze, P., Rücknagel, J., Jacobsm, A., Märländer, B., Kohn, H. J., & Christen, O. (2016). Environmental impacts of different crop rotations in terms of soil compaction. Journal of Environmental Management, 181(1), 54-63. doi: 10.1016/j.jenvman.2016.05.048

Guimarães Júnnyor, W. S., Diserens, E., Maria, I. C. de, Araujo, C. F., Jr., Farhate, C. V. V., & Souza, Z. M. (2019). Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Science of Total Environmental, 681(3), 424-434. doi: 10.1016/j. scitotenv.2019.05.009

Horn, R., Vossbrink, J., Peth, S., & Becker, S. (2007). Impact of modern forest vehicles on soil physical properties. Forest Ecology and Management, 248(1-2), 56-63. doi: 10.1016/j.foreco.2007.02.037

Iori, P., Dias, M. S., Jr., Ajayi, A. E., Guimarães, P. T. G., Pais, P. S. M., & Andrade, M. L. C. (2013). Comparison of field and laboratory models of the load bearing capacity in coffee plantations. Ciência e Agrotecnologia, 37(2), 130-137. doi: 10.1590/S1413-70542013000200003

IUSS Working Group WRB (2014). World reference base for soil resources 2014 (2nd ed.). (World Soil Resources Report, n. 106. F.). Rome: FAO.

Keller, T., Berli, M., Ruiz, S., Lamandé, M., Arvidsson, J., Schjønning, P., & Selvadurai, A. P. S. (2014). Transmission of vertical soil stress under agricultural tyres: comparing measurements with simulations. Soil & Tillage Research, 140(7), 106-117. doi: 10.1016/j.still.2014.03.001

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963-974. doi: 10.2307/2529876

Liu, Q., Liu, B., Zhang, Y., Lin, Z., Zhu, T., Sun, R.,... Xie, Z. (2017). Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology and Biochemistry, 104(1), 8-17. doi: 10.1016/j.soilbio.2016.10.006

Mazurana, M., Levien, R., Inda, A. V., Jr., Conte, O., Bressani, L. A., & Müller, J. (2017). Soil susceptibility to compaction under use conditions in southern Brazil. Ciência e Agrotecnologia, 41(1), 60-71. doi: 10. 1590/1413-70542017411027216

Pedrotti, A., Ferreira, M. M., Curi, N., Silva, M. L. N., Lima, J. M., & Carvalho, R. (2003). Relação entre atributos físicos, mineralogia da fração argila e formas de alumínio no solo. Revista Brasileira de Ciência do Solo, 27(1), 1-9. doi: 10.1590/S0100-06832003000100001

Peixoto, D. S., Silva, B. M., Oliveira, G. C., Moreira, S. G., Silva, F., & Curi, N. (2019). A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil & Tillage Research, 194(11), 104307. doi: 10.1016/j.still.2019.104307

Pirnazarov, A., & Sellgren, U. (2015). Reduced testing and modelling of the bearing capacity of rooted soil for wheeled forestry machines. Journal of Terramechanics, 60(1), 23-31. doi: 10.1016/j.jterra.2015.05. 002

R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Resende, M., Bahia, A. F. C., Fº., & Braga, J. M. (1987). Clay mineralogy of Latosols estimated by chemical allocation of total oxides contente by H2SO4 digestion. Revista Brasileira de Ciência do Solo, 11(1), 17-23.

Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., & Yang, X. M. (2009). Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3-4), 252-63. doi: 10. 1016/j.geoderma.2009.06.009

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R.,... Cunha, T. J. F. (2018). Brazilian soil classification (5nd ed. rev. and exp.). Brasília, DF: EMBRAPA.

Santos, W. J. R., Silva, B. M., Oliveira, G. C., Volpato, M. M. L., Lima, J. M., Curi, N., & Marques, J. J. (2014). Soil moisture in the root zone and its relation to plant vigor assessed by remote sensing at management scale. Geoderma, 221-222(6), 91-95. doi: 10.1016/j.geoderma.2014.01.006

Severiano, E. C., Oliveira, G. C., Dias, M. S., Jr., Curi, N., Costa, K. A. P., & Carducci, C. E. (2013). Preconsolidation pressure, soil water retention characteristics, and texture of Latosols in the Brazilian Cerrado. Australian Soil Research, 51(3), 193-202. doi: 10.1071/SR12366

Shahgholi, G., & Abuali, M. (2015). Measuring soil compaction and soil behavior under the tractor tire using strain transducer. Journal of Terramechanics, 59(1), 19-25. doi: 10.1016/j.jterra.2015.02.007

Silva, B. M., Oliveira, G. C., Serafim, M. E., Silva, E. A., Ferreira, M. M., Norton, L. D., & Curi, N. (2015). Critical soil moisture range for a coffee crop in an oxidic latosol as affected by soil management. Soil & Tillage Research, 154(1), 103-113. doi: 10.1016/j.still.2015.06.013

Silva, B. M., Oliveira, G. C., Serafim, M. E., Silva, E. A., Guimarães, P. T. G., Melo, L. B. B.,... & Curi, N. (2019). Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil & Tillage Research, 189(1), 36-43. doi: 10. 1016/j.still.2018.12.016

Silva, E. A., Oliveira, G. C., Carducci, C. E., Silva, B. M., Oliveira, L. M., & Costa, J. C. (2013). Increasing doses of agricultural gypsum, aggregate stability and organic carbon in Cerrado Oxisol under Coffee crop. Revista Ciências Agrárias-Amazonian Journal of Agricultural and Environmental Sciences, 56(1), 25-32. doi: 10.4322/rca.2013.012

Silva, E. A., Silva, S. H. G., Oliveira, G. C., & Carducci, C. E. (2016b). Root spatial distribution in coffee plants of different ages under conservation management system. African Journal of Agriculture Research, 11(49), 4970-4978. doi: 10.5897/AJAR2016.11356

Silva, R. B., Iori, P., Souza, Z. M., Pereira, D. M. G., Vischi, O. J., Fº., & Silva, F. A. M. (2016a). Contact pressures and the impact of farm equipment on Latosol with the presence and absence of sugarcane straw. Ciência e Agrotecnologia, 40(3), 265-278. doi: 10.1590/1413-70542016403001716

Skorupa, A. L. A., Tassinari, D., Silva, S. H. G., Poggere, G. C., Zinn, Y. L., & Curi, N. (2016). Xanthic- and Rhodic-Acrudoxes under cerrado vegetation: differential internal drainage and covarying micromorphological properties. Ciência e Agrotecnologia, 40(4), 443-453. doi: 10.1590/1413-70542016 404019916

Soil Survey Staff (2014). Keys to soil taxonomy (12nd ed.). Washington, DC: USDA-Natural Resources Conservation Service.

Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: John Wiley & Sons.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3nd ed. rev. and ampl.). Brasília, DF: EMBRAPA. Tollefson, J. (2010). Food: the global farm. Nature, 466(29), 554-556. doi: 10.1038/466554a

Vollant-Tuduri, N., Bruand, A., Brossard, M., Balbino, L. C., Oliveira, M. I. L., & Martins, É. S. (2005). Mass proportion of microaggregates and bulk density in a Brazilian clayey Oxisol. Soil Science Society of American Journal, 69(5), 1559-1564. doi: 10.2136/sssaj2003.0344

Zinn, Y. L., Lal, R., Bigham, J. M., & Resck, D. V. S. (2007). Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy. Soil Science Society of American Journal, 71(4), 1204-1214. doi: 10.2136/sssaj2006.0014




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n3p1049

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional