Uso de óleos essenciais de caju e mamona para melhorar a digestibilidade da fibra: digestibilidade, fermentação ruminal e síntese de proteína microbiana

Autores

DOI:

https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3429

Palavras-chave:

Aditivos naturais, Brachiaria humidicola, Bio-compostos, Metano, Pastejo.

Resumo

As dietas no tropico possuem altas proporções de forragem, sendo menos eficientes e mais contaminantes devido às altas perdas de energia na forma de metano e baixa digestibilidade das forragens tropicais. O objetivo do estudo foi determinar os efeitos dos óleos essenciais (OE) de caju (Anacardium occidentale) e mamona (Ricinus comunis) como aditivos em dietas alto forragem sobre consumo, digestibilidade, fermentação ruminal e síntese de proteína microbiana. Quatro novilhos da raça Holandesa, com cânula ruminal, foram utilizados em delineamento em quadrado latino 4x4. Os tratamentos foram 1, 2, 4 e 8 g dia-1 OE / animal (óleos essenciais - Oligobasics®). A dieta foi uma ração mista total (TMR) de feno de Brachiaria (Brachiaria humidicola cv Lanero) e concentrado (grão de milho moído, farelo de soja, sulfato de amônio, ureia e minerais) na proporção 80:20. Foram observadas diferenças na digestibilidade da fibra em detergente neutro (FDN) e dos nutrientes digestíveis totais (NDT) em níveis acima de 2 g dia-1 OE (P < 0,05). Os AGV (ácidos graxos voláteis) acetato e propionato foram maiores nas dietas com 2 g dia-1 OE (P < 0,05), sem afetar a razão acetato: propionato. Níveis acima de 2 g dia-1 OE afetaram negativamente a excreção fecal de N (P < 0,05). As inclusões de OE de A. occidentale e R. communis em 2 g dia-1 OE / animal melhoraram a digestão da fibra e diminuíram a excreção fecal de N. Estes resultados indicam que esta mistura de OE pode ter maior atividade antimicrobiana em doses mais baixas. As perdas de N, digestão da fibra e digestibilidade foram melhoradas, com o uso de óleos essenciais de caju e mamona em dietas com alta inclusão de forragem.

Métricas

Carregando Métricas ...

Biografia do Autor

Roman David Castañeda-Serrano, Universidad del Tolima

Investigador, Grupo de Investigación en Sistemas Agroforestales Pecuarios, Departamento de Producción Animal, Universidad el Tolima, Ibagué, Tolima, Colômbia.

Olga Teresa Barreto-Cruz, Universidad del Tolima

Investigadora, Grupo de Investigación en Sistemas Agroforestales Pecuarios, Departamento de Producción Animal, Universidad el Tolima, Ibagué, Tolima, Colômbia.

Sabrina Marcantonio Coneglian, Mosaic Fertilizantes

Drª em Zootecnia, Especialista Técnica, Mosaic Fertilizantes, São Paulo, SP, Brasil.

Antonio Ferriani Branco, Universidade Estadual de Maringá

Dr. em Zootecnia, Departamento de Zootecnia, Universidade Estadual de Maringá, UEM, Maringá, PR, Brasil.

Referências

Ajileye, O. O., Obuotor, E. M., Akinkunmi, E. O., & Aderogba, M. A. (2015). Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract. Journal of King Saud University - Science, 27(3), 244-252. doi: 10.1016/j.jksus.2014.12.004

Akbarian-Tefaghi, M., Ghasemi, E., & Khorvash, M. (2018). Performance, rumen fermentation and blood metabolites of dairy calves fed starter mixtures supplemented with herbal plants, essential oils or monensin. Journal of Animal Physiology and Animal Nutrition, 102(3), 630-638. doi: 10.1111/jpn.128 42

Allen, S., & de Brauw, A. (2018). Nutrition sensitive value chains: theory, progress, and open questions. Global Food Security, 16, 22-28. doi: 10.1016/j.gfs.2017.07.002

Association of Official Analytical Chemists (2016). Official methods of analysis of AOAC international. Gaithersburg: J. George Latimer.

Archimède, H., Eugène, M., Marie Magdeleine, C., Boval, M., Martin, C., Morgavi, D. P.,… Doreau, M. (2011). Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, 166, 59-64. doi: 10.1016/j.anifeedsci.2011.04.003

Benchaar, C., Duynisveld, J. L., & Charmley, E. (2006). Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Canadian Journal of Animal Science, 86 (1), 91-96. doi: 10.4141/A05-027

Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., & Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580-2595. doi: 10. 3168/jds.2006-644

Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8(2), 130-132. doi: 10.1021/AC60252A045

Chen, X. B., & Gomes, M. J. (1992). Estimation of microbial protein supply to sheep and cattle basid on urinary excretion of purine derivatives-an overview of the technical details. Buchsburnd, Aberdeen: Ed. Rowett Research Institute.

Chen, X. B., Mejia, A. T., Kyle, D. J., & Ørskov, E. R. (1995). Evaluation of the use of the purine derivative-creatinine ratio in spot urine and plasma samples as an index of microbial protein supply in ruminants - studies in sheep. Journal of Agricultural Science, 125(1), 137-143. doi: 10.1017/S002185960007458X

Chen, X. B., Methieson, J., DeB Hovel, F., & Reeds, P. J. (1990). Measurement of purine derivative in urine of ruminants using automated methods. Journal of the Science of Food and Agriculture, 53(1), 23-33. doi: 10.1002/jsfa.2740530104

Cobellis, G., Trabalza-Marinucci, M., & Yu, Z. (2016). Science of the total environment critical evaluation of essential oils as rumen modi fi ers in ruminant nutrition : a review. Science of the Total Environment, 546, 556-568. doi: 10.1016/j.scitotenv.2015.12.103

Coneglian, S. M., Castañeda Serrano, R. D., Cruz, O. T. B., & Branco, A. F. (2019). Effects of essential oils of Cashew and Castor on intake, digestibility, ruminal fermentation and purine derivatives in beef cattle fed high grain diets. Semina: Ciências Agrárias, 40(5), 2057. doi: 10.5433/1679-0359.2019v40n5p2057

Daiany, G., Detmann, E., Valadares, S. D. C., Fº., Fukushima, R. S., Souza, M. A. de, Valente, T. N. P., … Queiroz, A. C. de. (2011). Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber. Animal Feed Science and Technology, 168(3-4), 206-222. doi: 10.1016/j.anifeedsci.2011.05.001

Dijkstra, J. A. N., France, J., & Davies, D. R. (1998). Different mathematical approaches to estimating microbial protein supply in ruminants. Journal of Dairy Science, 81(12), 3370-3384. doi: 10.3168/jds. S0022-0302(98)75902-8

Durmic, Z., Moate, P. J., Eckard, R., Revell, D. K., Williams, R., & Vercoe, P. E. (2014). In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. Journal of the Science of Food and Agriculture, 94(6), 1191-1196. doi: 10.1002/jsfa.6396

Elcoso, G., Zweifel, B., & Bach, A. (2019). Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Applied Animal Science, 35(3), 304-311. doi: 10.15232/aas.2018-01 825

Fujihara, T., Ørskov, E. R., Reeds, P. J., & Kyle, D. J. (1987). The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. The Journal of Agricultural Science, 109(1), 7-12. doi: 10.1017/S0021859600080916

Godde, C. M., Garnett, T., Thornton, P. K., Ash, A. J., & Herrero, M. (2018). Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Global Food Security, 16, 93-105. doi: 10.1016/ j.gfs.2017.11.003

Goel, G., & Makkar, H. P. S. (2012). Methane mitigation from ruminants using tannins and saponins. Tropical animal health and production, 44(4), 729-739. doi: 10.1007/s11250-011-9966-2

Jena, J., & Gupta, A. K. (2012). Ricinus communis linn: a phytopharmacological review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 25-29.

Jouany, J.-P., & Morgavi, D. P. (2007). Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal, 1(10), 1443-1466. doi: 10.1017/S1751731107000742

Kadri, A., Gharsallah, N., Damak, M., & Gdoura, R. (2011). Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. Journal of Medicinal Plants Research, 5(8), 1466-1470. doi: 10.5897/JMPR.9000347

Kahvand, M., & Malecky, M. (2018). Dose-response effects of sage (Salvia officinalis) and yarrow (Achillea millefolium) essential oils on rumen fermentation in vitro. Annals of Animal Science, 18(1), 125-142. doi: 10.1515/aoas-2017-0024

Kim, M., Eastridge, M. L., & Yu, Z. (2014). Investigation of ruminal bacterial diversity in dairy cattle fed supplementary monensin alone and in combination with fat, using pyrosequencing analysis. Canadian Journal of Microbiology, 60(2), 65-71. doi: 10.1139/cjm-2013-0746

Lin, B., Lu, Y., Salem, A. Z. M., Wang, J. H., Liang, Q., & Liu, J. X. (2013). Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Animal Feed Science and Technology, 184(1-4), 24-32. doi: 10.1016/j.anifeedsci.2013.05.011

Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057-3064. doi: 10.1016/j.foodres.2011.07.030

McGuffey, R. K. (2017). A 100-year review: metabolic modifiers in dairy cattle nutrition. Journal of Dairy Science, 100(12), 10113-10142. doi: 10.3168/jds.2017-12987

Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: ollaborative study. Journal of AOAC International, 85(6), 1217-1240. doi: 10.1093/jaoac/85.6.1217

Michailoff, A. A., Silveira, M. F., Maeda, E. M., Sordi, A. C. B., Francisco, L. F., & Farenzena, R. (2020). Effect of including functional oils in ovine diets on ruminal fermentation and performance. Small Ruminant Research, 185, 106084. doi: 10.1016/j.smallrumres.2020.106084

Molero, R., Ibars, M., Calsamiglia, S., Ferret, A., & Losa, R. (2004). Effects of a specific blend of essential oil compounds on dry matter and crude protein degradability in heifers fed diets with different forage to concentrate ratios. Animal Feed Science and Technology, 114(1-4), 91-104. doi: 10.1016/j.anifeedsci. 2003.11.011

Nanon, A., Suksombat, W., & Yang, W. Z. (2014). Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Animal Feed Science and Technology, 196, 50-59. doi: 10.1016/j. anifeedsci.2014.07.006

National Research Council (2006). Nutrient requirements of beef cattle.

Newbold, C. J., McIntosh, F. M., Williams, P., Losa, R., & Wallace, R. J. (2004). Effects of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology, 114(1-4), 105-112. doi: 10.1016/j.anifeedsci.2003.12.006

Oh, J., Harper, M., & Hristov, A. N. (2019). Effects of lowering crude protein supply alone or in a combination with essential oils on productivity, rumen function and nutrient utilization in dairy cows. Animal, 13(11), 50-59 1-9. doi: 10.1017/S1751731119001083

Oliveira, M. S. C., Morais, S. M. de, Magalhães, D. V., Batista, W. P., Vieira, Í. G. P., Craveiro, A. A.,… Lima, G. P. G. de. (2011). Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Tropica, 117(3), 165-170. doi: 10.1016/j.actatropica.2010.08.003

Owens, F. N., & Mehmet, B. (2016). Ruminal Fermentation. In Rumenology (pp. 63-102). Springer, Cham. doi: 10.1007/978-3-319-30533-2

Patra, A. K., & Yu, Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78(12), 4271-4280. doi: 10.1128/AEM.00309-12

Penner, G. B., Taniguchi, M., Guan, L. L., Beauchemin, K. A., & Oba, M. (2009). Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. Journal of Dairy Science, 92(6), 2767-2781. doi: 10. 3168/jds.2008-1716

Playne, M. J. (1985). Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. Journal of the Science of Food and Agriculture, 36(8), 638-644. doi: 10. 1002/jsfa.2740360803

Poudel, P., Froehlich, K., Casper, D. P., & St-Pierre, B. (2019). Feeding essential oils to neonatal holstein dairy calves results in increased ruminal prevotellaceae abundance and propionate concentrations. Microorganisms, 7(5), 120. doi: 10.3390/microorganisms7050120

Ribeiro, P. R., Castro, R. D. de, & Fernandez, L. G. (2016). Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Industrial Crops and Products, 91, 358-376. doi: 10.1016/j.indcrop.2016.07.010

Schären, M., Drong, C., Kiri, K., Riede, S., Gardener, M., Meyer, U.,… Dänicke, S. (2017). Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. Journal of Dairy Science, 100(4), 2765-2783. doi: 10.3168/jds.2016-11994

Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science, 70, 3562-3577. doi: 10.2527/1992.70113562x

Tak, J. H., & Isman, M. B. (2015). Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Scientific Reports, 5, 1-10. doi: 10. 1038/srep12690

Teobaldo, R. W., Paula, N. F. de, Zervoudakis, J. T., Fonseca, M. A., Cabral, L. S., Martello, H. F.,…Mundim A.T. (2020). Inclusion of a blend of copaiba, cashew nut shell and castor oil in the protein-energy supplement for grazing beef cattle improves rumen fermentation, nutrient intake and fibre digestibility. Animal Production Science, 60(8), 1039-1050. doi: 10.1071/AN18725

Tomkins, N. W., Denman, S. E., Pilajun, R., Wanapat, M., McSweeney, C. S., & Elliott, R. (2015). Manipulating rumen fermentation and methanogenesis using an essential oil and monensin in beef cattle fed a tropical grass hay. Animal Feed Science and Technology, 200(1), 25-34. doi: 10.1016/j.anifeedsci. 2014.11.013

Torres, R. N. S., Moura, D. C., Ghedini, C. P., Ezequiel, J. M. B., & Almeida, M. T. C. (2020). Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Ruminant Research, 189, 106148. doi: 10.1016/j.smallrumres.2020.106148

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Wang, L., Zhang, G., Li, Y., & Zhang, Y. (2020). Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals, 10(2), 1-12. doi: 10.3390/ani10020223

Williams, C. H., David, D. J., & Iismaa, O. (1962). The determination of chromic oxide in feces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, 59(3), 381. doi: 10.1017/S0 02185960001546X

Downloads

Publicado

2020-11-06

Como Citar

Castañeda-Serrano, R. D., Barreto-Cruz, O. T., Coneglian, S. M., & Branco, A. F. (2020). Uso de óleos essenciais de caju e mamona para melhorar a digestibilidade da fibra: digestibilidade, fermentação ruminal e síntese de proteína microbiana. Semina: Ciências Agrárias, 41(6Supl2), 3429–3440. https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3429

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)