Comparison of random regression models, traditional animal model and with the inclusion of molecular markers in the estimation of genetic parameters in Colombian Holstein cattle

Daniel Cardona-Cifuentes, Albeiro López-Herrera, Luis Gabriel González-Herrera, Mario Fernando Cerón-Muñoz, José Julián Echeverri-Zuluaga

Abstract


The use of molecular markers to identify desirable genes in animal production is known as marker-assisted selection. The traditional genetic evaluation model uses the BLUP methodology; when genetic markers are included in the evaluation model, the methodology is known as M-BLUP. In contrast, random regression models (RRM), unlike the models based on production at 305 days, consider factors that change for each animal from one test to another. The objective of this study was to compare variance components, genetic parameters and breeding values for milk production, protein percentage and somatic cell score in Colombian Holstein cattle using BLUP, M-BLUP and RRM. For the estimation of genetic parameters and values, 2003 lactations corresponding to 1417 cows in 55 herds were used, and effects of the order of delivery, herd, and contemporary group were included. The three traits presented greater heritability under the MBLUP model: 0.44 for protein percentage, 0.27 for milk production and 0.28 for somatic cell score. This was because the genetic variance was greater when M-BLUP was used, which allowed a greater accuracy of the breeding value estimation in the three traits. Therefore, the model that includes information on molecular markers is more suitable for genetic evaluation in Colombian Holstein cattle.

Keywords


Dairy cattle; Animal genetics; Genetic markers; Animal breeding; Dairy production.

Full Text:

PDF

References


Barbosa, P. F., Cruz, G. M. D., Costa, J. L. D., & Rodrigues, A. D. A. (1999). Causas de variação da produção de leite em um rebanho da raça holandesa em São Carlos, SP. Revista Brasileira de Zootecnia, 28(5), 974-981. doi: 10.1590/S1516-35981999000500010

Bignardi, A. B., El Faro, L., Torres, R. A., Jr., Cardoso, V. L., Machado, P. F., & Albuquerque, L. G. (2011). Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows. Genetics and Molecular Research, 10(4), 3565-3575. doi: 10.4238/2011.October.31.4

Boligon, A. A., Baldi, F., Mercadante, M. E., Lôbo, R. B., Pereira, R. J., & Albuquerque, L. G. (2011). Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle. Genetics and Molecular Research, 10(2), 1227-1236. doi: 10.4238/vol10-2gmr1087

Caccamo, M., Veerkamp, R. F., De Jong, G., Pool, M. H., Petriglieri, R., & Licitra, G. (2008). Variance components for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information. Journal of Dairy Science, 91(8), 3268-3276. doi: 10.3168/jds.2007-0805

Costa, C. N., Santos, G. G., Cobuci, J. A., Thompson, G., & Carvalheira, J. G. (2015). Genetic parameters for test day somatic cell score in Brazilian Holstein cattle. Genetics and Molecular Research, 14(4), 19117-19127. doi: 10.4238/2015

De Roos, A. P., Harbers, A. G., & De Jong, G. (2004). Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in the Netherlands. Journal of Dairy Science, 87(8), 2693-2701. doi: 10.3168/jds.S0022-0302(04)73396-2

Dornelles, M. D., Rorato, P. R. N., Gama, L. T., Breda, F. C., Bondan, C., Everling, D. M., & Feltes, G. L. (2016). Random regression models using different functions to estimate genetic parameters for milk production in Holstein Friesians. Ciência Rural, 46(9), 1649-1655. doi: 10.1590/0103-8478cr20150473

Druet, T., Fritz, S., Boichard, D., & Colleau, J. J. (2006). Estimation of genetic parameters for quantitative trait loci for dairy traits in the French Holstein population. Journal of Dairy Science, 89(10), 4070-4076. doi: 10.3168/jds.S0022-0302(06)72451-1

Gebreyesus, G., Lund, M. S., Janss, L., Poulsen, N. A., Larsen, L. B., Bovenhuis, H., & Buitenhuis, A. J. (2016). Multi-trait estimation of genetic parameters for milk protein composition in the Danish Holstein. Journal of Dairy Science, 99(4), 2863-2866. doi: 10.3168/jds.2015-10501

González-Herrera, L. G. (2013). Parâmetros genéticos para produção de leite e persistência de lactações múltiplas na raça Gir. Tese de doutorado, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brasil.

Guillaume, F., Fritz, S., Boichard, D., & Druet, T. (2008a). Correlations of marker-assisted breeding values with progeny-test breeding values for eight hundred ninety-nine French Holstein bulls. Journal of Dairy Science, 91(6), 2520-2522. doi: 10.3168/jds.2007-0829

Guillaume, F., Fritz, S., Boichard, D., & Druet, T. (2008b). Estimation by simulation of the efficiency of the French marker-assisted selection program in dairy cattle. Genetics Selection Evolution, 40(1), 91-102. doi: 10.1051/gse:2007036

Haile-Mariam, M., Bowman, P. J., & Goddard, M. E. (2003). Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livestock Production Science, 80(3), 189-200. doi: 10.1016/S0301-6226(02)00188-4

Hayes, B. (2007). QTL mapping, MAS, and genomic selection. Ames, Iowa: Animal Breeding & Genetics, Department of Animal Science, Iowa State University. Retrieved from http://www.ans.iastate.edu/ section/abg/shortcourse/notes.pdf

Jakobsen, J. H., Madsen, P., Jensen, J., Pedersen, J., Christensen, L. G., & Sorensen, D. A. (2002). Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. Journal of Dairy Science, 85(6), 1607-1616. doi: 10.3168/jds.S0022-0302(02)74231-8

Jamrozik, J., Schaeffer, L. R., & Dekkers, J. C. (1997). Genetic evaluation of dairy cattle using test day yields and random regression model. Journal of Dairy Science, 80(6), 1217-1226. doi: 10.3168/jds.S0022-0302(97)76050-8

Khanzadeh, H., Hossein, N. G., & Naserani, M. (2013). Estimation of genetic parameters and trends for milk fat and protein percentages in Iranian Holsteins using random regression test day model. Archives Animal Breeding, 56(47), 487-496. doi: 10.7482/0003-9438-56-047

Kheirabadi, K., & Alijani, S. (2014). Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model. Archives Animal Breeding, 57(1), 1-12. doi: 10.7482/0003-9438-57-012

Lidauer, M., Mäntysaari, E. A., & Strandén, I. (2003). Comparison of test-day models for genetic evaluation of production traits in dairy cattle. Livestock Production Science, 79(1), 73-86. doi: 10.1016/S0301-6226(02)00142-2

Lipkin, E., Bagnato, A., & Soller, M. (2008a). Expected effects on protein yield of marker-assisted selection at quantitative trait loci affecting milk yield and milk protein percentage. Journal of Dairy Science, 91(7), 2857-2863. doi: 10.3168/jds.2008-1011

Lipkin, E., Tal-Stein, R., Friedmann, A., & Soller, M. (2008b). Effect of quantitative trait loci for milk protein percentage on milk protein yield and milk yield in Israeli Holstein dairy cattle. Journal of Dairy Science, 91(4), 1614-1627. doi: 10.3168/jds.2007-0655

Liu, Z., Reinhardt, F., & Reents, R. (2000). Parameter estimates of a random regression test day model for first three lactation somatic cell scores. Interbull Bulletin, 31(26), 61-65. Retrieved from https://journal. interbull.org/index.php/ib/article/view/363




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n3p1303

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional