Agronomical and quality differences of four fig cultivars grown in Brazil

Rafael Augusto Ferraz, Sarita Leonel, Jackson Mirellys Azevêdo Souza, Joyce Helena Modesto, Rafael Bibiano Ferreira, Marcelo de Souza Silva


Figs consumption date back to the beginnings of civilization. Currently, consumers have become more demanding about quality of fruits, and figs are then highly indicated, since it is rich in nutrients, making them a great addition to a healthy diet. Although there is only one commercial fig cultivar that is commonly grown in Brazil, different cultivars should be considered for the diversification of fig production with regards to their yield and fruit quality. This research aimed at evaluating growth, yield, physicochemical characteristics and bioactive compounds of figs grown in Brazil. Then, four cultivars (Roxo de Valinhos, White Genova, PI-189 and Troyano) were studied to determine canopy volume, productive efficiency, soluble solids - SS, pH, titratable acidity - TA, SS/TA ratio, sugars, ascorbic acid, phenolic compounds, pigments and antioxidant activity. The cv. White Genova presented the highest canopy volume, while ‘Roxo de Valinhos’, ‘PI-189’ and ‘Troyano’ performed the greatest productive efficiency. The cvs. Roxo de Valinhos, White Genova and Troyano produced fruits with higher content of SS, reducing sugars and SS/TA ratio, while the fruits of ‘PI-189’ and ‘Roxo de Valinhos’ contained the highest levels of antioxidant activity. PCA enabled to differentiate the studied cultivars, which evidenced that PI-189 was the most different of all.


Antioxidants; Ficus carica L.; Phenolic compounds; Tree performance; Yield.

Full Text:



Adão, R. C., & Glória, M. B. A. (2005). Bioactive amines and carbohydrate changes during ripening of ‘Prata’ banana (Musa acuminata x Musa balbisiana). Food Chemistry, 90(4), 705-711. doi: 10.1016/j. foodchem.2004.05.020

Arvaniti, O. S., Samaras, Y., Gatidou, G., Thomaidis, N. S., & Stasinakis, A. S. (2019). Review on fresh and dried figs: chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Research International, 119(2019), 244-267. doi: 10.1016/j.foodres.2019.01.055

Association of Official Analytical Chemists (1995). Official methods of analysis. Method nº. 967.21. Washington: AOAC.

Brand-Willians, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi: 10.1016/S0023-6438(95) 80008-5

Cantuaria-Avilés, T., Mourão, F. A. A., Fº., Stuchi, E. S., Silva, S. R., & Nunez, E. (2010). Tree performance and fruit yield and quality of ‘Oktisu’ Satsuma mandarin grafted on 12 rooststocks. Scientia Horticulturae, 123(3), 318-322. doi: 10.1016/j.scienta.2009.09.020

Chalker-Scott, L. (1999). Environmental significance of anthocyanin in plant stress responses. Photochemistry and Photobiology, 70(1), 1-9. doi: 10.1111/j.1751-1097.1999.tb01944.x

Corrêa, R. C., Peralta, R. M., Haminiuk, C. W., Maciel, G. M., Bracht, A., & Ferreira, I. C. (2018). New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Critical Reviews in Food Science and Nutrition, 58(6), 942-957. doi: 10.1080/10408398.2016.1233860

Crisosto, C. H., Bremer, V., Ferguson, L., & Crisosto, G. M. (2010). Evaluating quality atributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience, 45(4), 707-710. doi: 10.21273/HORTSCI.45.4.707

Cunha, A. R., & Martins, D. (2009). Classificação climática para os municípios de Botucatu e São Manuel-SP. Irriga, 14(1), 1-11. doi: 10.15809/irriga.2009v14n1p1-11

Dueñas, M., Alonso, J. J. P., Buelga, C. S., & Bailón, T. E. (2008). Anthocyanin composition in fig (Ficus carica L.). Journal of Food Composition and Analysis, 21(2), 107-115. doi: 10.1016/j.jfca.2007.09.002

Food and Agriculture Organization (2020). World production of fig, 2018. Retrieved from http://www.fao. org/faostat/en/#data/QC

Instituto Adolfo Lutz (2005). Métodos físico-químicos para análise de alimentos (4a ed.). São Paulo, SP: IAL.

Khadivi, A., Anjam, R., & Anjam, K. (2018). Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Scientia Horticulturae, 238(19), 66-74. doi: 10.1016/j. scienta.2018.04.031

Mawa, S., Husain, K., & Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evidence-Based Complementary and Alternative Medicine, 2013, 1-8. doi: 10.11 55/2013/974256

Mendel, K. (1956). Rootstock-scion relationships in Shamouti trees on light soil. Ktavim, 6, 35-60.

Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry, 51(23), 6887-6892. doi: 10.1021/jf0345 06n

Muller, L., Fröhlich, K., & Böhm, V. (2011). Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (?TEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129(1), 139-148. doi: 10.1016/j.foodchem.2011.04.045

Nelson, N. (1944). A photometric adaptation of somogyi method for determination of glucose. Journal of Biological Chemistry, 153(2), 375-380. doi: Retrieved from d4d24726d051472489140cd543aa839e

Palmeira, L., Pereira, C., Dias, M. I., Abreu, R. M. V., Corrêa, R. C. G., Pires, T. C. S. P.,... Ferreira, I. C. F. R. (2019). Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus carica L.) variety. Food Research International, 126(2019), 1-10. doi: 10.1016/j.foodres.2019. 108572

Pande, G., & Akoh, C. C. (2010). Organic acids, antioxidant capacity, phenolic content and lipid characterisation of Georgia-grown underutilized fruit crops. Food Chemistry, 120(4), 1067-1075. doi: 10.1016/j.foodchem.2009.11.054

Pojer, E., Mattivi, F., Johnson, D., & Stockley, C. (2013). The case for anthocyanin consumption to 521 promote human health: a review. Comprehensive Reviews in Food Science and Food Safety, 12(2013), 522 483-508. doi: 10.1111/1541-4337.12024

Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Danyanova, B., Sabatini, A. G.,... Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemical Analysis, 15(4), 235-240. doi: 10.1002/pca.777

Reynerston, K. A., Yang, H., Jiang, B., Basile, M. J., & Kennelly, E. J. (2008). Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry, 109(4), 883-890. doi: 10.1016/j.foodchem.2008.01.021

Rodrigues, M. G. F., Correa, L. S., & Boliani, A. C. (2009). Avaliação de seleções mutantes de figueira cv Roxo de Valinhos. Revista Brasileira de Fruticultura, 31(3), 771-777. doi: 10.1590/S0100-2945200900 0300021

Rodrigues, M. G. F., Ferreira, A. F. A., Monteiro, L. N. H., Santos, T. P., Lisboa, L. A. M., & Figueiredo, P. A. M. (2019a). Initial growth and physiological indexes of Fig accessions in active germiplasm bank. Revista Brasileira de Fruticultura, 41(4), e-154. doi: 10.1590/0100-29542019154.

Rodrigues, M. G. F., Monteiro, L. N. H., Ferreira, A. F. A., Santos, T. P., Pavan, B. E., Neves, V. A. B., & Boliani, A. C. (2019b). Biometric characteristics among fig tree genotypes in Brazil. Genetics and Molecular Research, 18(2), e-18191. doi: 10.4238/gmr18191.

Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Zensing of Environment, 81(2-3), 337-354. doi: 10.1016/S0034-4257(02)00010-X

Soethe, C., Steffens, C. A., Amarante, C. V. T., Martin, M. S. de, & Bortolini, A. J. (2016). Quality, phenolic compounds, and antioxidant activity of ‘Tupy’ and ‘Guarani’ blackberries stored at different temperatures. Pesquisa Agropecuária Brasileira, 51(80), 950-957. doi: 10.1590/S0100-204X20160008 00007

Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H.,… Flaishman, M. A. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717-7723. doi: 10.1021/jf060497h

Swain, T., & Hills, W. E. (1959). The phenolic constituents of Prunus persica domestic: the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(2), 63-68. doi: 10. 1002/jsfa.2740100110

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675. doi: 10.1016/j.jfca.2006.01.003

Vallejo, F., Marín, J. G., & Tomás-Barberán, F. A. (2012). Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chemistry, 130(3), 485-492. doi: 10.1016/j.foodchem.2011.07.032

Veberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chemistry, 106(1), 153-157. doi: 10.1016/j.foodchem.2007. 05.061

Xu, C., Zhang, Y., Cao, L., & Lu, J. (2010). Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry, 119(4), 1557-1565. doi: 10.1016/j.foodchem.2009.09. 042


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional