Physiological and agronomic characteristics of the common bean as affected by multifunctional microorganisms

Cássia Cristina Rezende, Laylla Luanna de Mello Frasca, Mariana Aguiar Silva, Rafael Augusto Corrêa Pires, Anna Cristina Lanna, Marta Cristina Corsi de Filippi, Adriano Stephan Nascente

Abstract


Multifunctional microorganisms (MMs) can have beneficial effects on plants through direct and indirect mechanisms. This study aimed to determine the effect of MMs on shoot and root biomass production; gas exchange; content of macronutrients in the shoots, roots and grains; yield components; and grain yield of common bean plants. A completely randomized design with twenty-six treatments and three replications was used under controlled conditions. Treatments consisted of the application of MMs and their combinations in pairs, with the nine rhizobacteria isolates BRM 32109, BRM 32110 and 1301 (Bacillus sp.), BRM 32111 and BRM 32112 (Pseudomonas sp.), BRM 32113 (Burkholderia sp.), BRM 32114 (Serratia sp.), 1381 (Azospirillum sp.) and Ab-V5 (Azospirillum brasilense); an edaphic fungal isolate T-26 (Trichoderma koningiopsis); and a control (without MMs). These MMs were applied at three time points: microbiolization of the seeds, watering the soil seven days after sowing (DAS) and spraying the plants with 21 DAS. In comparison to the control plants, the isolates 1301 and T-26, in addition to the combinations Ab-V5 + T-26, BRM 32114 + BRM 32110 and 1381 + T-26, provided better results, with an increase of 36.5% in the grain yield, a higher accumulation of biomass (78.0%) and a higher content of N, P and K (42.6, 67.8 and 25.7%, respectively) in the shoots of common bean plants. Therefore, the results allow us to infer that the use of MMs is a good strategy for increasing common bean grain yields.

Keywords


Coinoculation; Fungus; Grain yield; Phaseolus vulgaris; Rhizobacteria.

Full Text:

PDF

References


Balbinot, A. A., Jr., Ferreira, A. S., Werner, F., Aguiar e Silva, M. A. de, & Zucareli, C. (2018). Crescimento de plantas de soja em função da redução da densidade de semeadura e sua relação com a produtividade. In T. S. R. Santos (Eds), (pp. 1-18). Embrapa Soja. Boletim de Pesquisa e Desenvolvimento, 18). Londrina: EMBRAPA Soja. Recuperado de https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/ doc/1099933/1/ BOLETIMPB18Alvadi.pdf

Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 11(5), 557-574. doi: 10.1080/09583150120076120

Chagas, L. F. B., Chagas, A. F., Jr., Soares, L. P., & Fidelis, R. R. (2017). Trichoderma in promoters of plant growth. Revista de Agricultura Neotropical, 4(3), 97-102. doi: 10.32404/rean.v4i3.1529

Chaudhary, S. R., & Sindhu, S. S. (2016). Growth stimulation of clusterbean (Cyamopsis tetragonoloba) by coinoculation with rhizosphere bacteria and Rhizobium. Legume Research, 39(6), 1003-1012. doi: 10. 18805/lr.v0iOF.8605

Chibeba, A. M., Guimarães, M. F., Brito, O. R., Nogueira, M. A., Araújo, R. S., & Hungria, M. (2015). Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Sciences, 6(10), 1641-1649. doi: 10.4236/ajps.2015.610164

Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiological Research, 159(4), 371-394. doi: 10.1016/j.micres.2004.08.004

Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise do solo. Rio de Janeiro, RJ: EMBRAPA Solos.

Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E.,... Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 16(9), 749-759. doi: 10.1038/nrmicro2637

Ennahli, S., & Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374-2382. doi: 10.2135/cropsci2005.0147

Faria, J., Aragão, F., Souza, T., Quintela, E., Kitajima, E., & Ribeiro, S. (2016). Golden mosaic of common beans in Brazil: management with a transgenic approach. Archives of Microbiology, 159(10), 727-737. doi: 10.1094/APSFeature-2016-10

Filippi, M. C. C., Silva, G. B., Lobo, V. L. S., Cortes, M. V. C. B., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58(2), 160-166. doi: 10.1016/j.biocontrol.2011.04.016

França, S. K. S., Cardoso, A. F., Lustosa, D. C., Ramos, E. M. L. S., Filippi, M. C. C., & Silva, G. B. da. (2015). Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, 35(1), 317-324. doi: 10.1007/s13593-014-0244-3

Furlani, A. M. C., Bataglia, O. C., Furlani, P. R., Azzini, L. E., & Camargo, O. B. (1983). Avaliação de genótipos de arroz quanto a eficiência no uso de fósforo em solução nutritiva e no solo. Revista Brasileira de Ciência do Solo, 7(3), 291-303. doi: 10.1590/S0006-87051991000200012

Ganascini, D., Laureth, J. C. U., Mendes, I. S., Tokura, L. K., Sutil, E. L. V., Villa, B. de,... Coelho, S. R. M. (2019). Analysis of the production chain of bean culture in Brazil. Journal of Agricultural Science, 11(7), 256-267. doi: 10.5539/jas.v11n7p256

Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012(5), 1-15. doi: 10.6064/2012/963401

Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolas, C., Monte, E., & Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16(2), 69-80. doi: 10.2436/20.1501.01.181

Hungria, M., Campo, R. J., Souza, E. M., & Pedrosa, F. O. (2010). Inoculation with selected strains of Azospirillum brasilense and Azospirillum lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(13), 413-425. doi: 10.1007/s11104-009-0262-0

Kado, C. J., & Heskett, M. G. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 60(6), 969-976. doi: 10.1094/Phyto-60-969

Lobo, M., Jr., Brandão, R. S., & Geraldine, A. M. (2009). Produtividade do feijoeiro comum em campo em tratamentos com Trichoderma harzianum e Trichoderma asperellum. (Comunicado Técnico). Santo Antônio de Goiás: EMBRAPA Arroz e Feijão. Recuperado de https://www.embrapa.br/busca-de-publicacoes/-/publicacao/663620/produtividade-do-feijoeiro-comum-em-campo-em-tratamentos-com-trichoderma-harzianum-e-trichoderma-asperellum

Machado, D. F. M., Parzianello, F. R., Silva, A. C. F. da, & Antoniolli, Z. I. (2012). Trichoderma in Brazil: The fungus and the bioagent. Revista de Ciências Agrárias, 35(1), 274-288. doi: 10.19084/rca.16182

Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional de plantas: princípios e aplicações. Piracicaba: Potafos.

Nascente, A. S., Filippi, M. C. C. de, Lanna, A. C., Souza, A. C. A., Lobo, V. L. S., & Silva, G. B. da. (2017a). Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24(3), 2956-2965. doi: 10.1007/s11356-016-8013-2

Nascente, A. S., Filippi, M. C. C. de, Lanna, A. C., Sousa, T. P., Souza, A. C. A., Silva Lobo, V. L. da, & Silva, G. B. da. (2017b). Effects of beneficial microorganisms on lowland rice development. Environmental Science and Pollution Research, 24(32), 25233-25242. doi: 10.1007/s11356-017-0212-y

Nascente, A. S., Filippi, M. C. C. de, Sousa, T. P. de, Chaibub, A. A., Souza, A. C. de, & Lanna, A. C. (2019b). Upland rice gas exchange, nutrient uptake and grain yield as affected by potassium fertilization and inoculation of the diazotrophic bacteria Serratia spp. Australian Journal of Crop Science, 13(6), 944-953. doi: 10.21475/ajcs.19.13.06.p1689

Nascente, A. S., Lanna, A. C., Sousa, T. P. de, Chaibub, A. A., Souza, A. C. A. de, & Filippi, M. C. C. de. (2019a). N fertilizer dose-dependent efficiency of Serratia spp. for improving growth and yield of upland rice (Oryza sativa L.). International Journal of Plant Production, 13(3), 217-226. doi: 10.1007/ s42106-019-00049-5

Oliveira, F. C., Benett, C. G. S., Benett, K. S. S., Silva, L. M., & Vieira, B. C. (2017). Different doses and times of application of zinc in soybean culture. Revista de Agricultura Neotropical, 4(5), 28-35. doi: 10. 32404/rean.v4i5.2188

Oliveira, G. R. F., Silva, M. S., Marciano, T. V. F., Proença, S. L., & Sá, M. E. (2016). Early growth of common bean plants in response to vigour seeds and inoculation with Bacillus subtilis. Brazilian Journal of Biosystems Engineering, 10(4), 439-448. doi: 10.18011/bioeng2016v10n4p439-448

Podile, A. R., & Kishore, G. K. (2006). Plant growth-promoting rhizobacteria. In S. S. Gnanamanickam (Ed.), Plant associated bacteria (pp. 195-230). Netherlands: Springer.

Rodriguez, H., Fragar, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant groth-promoting bactéria. Plant and Soil, 287(1), 15-21. doi: 10.1007/s11104-006-9056-9

Souza, E. A. S. P., Harakava, R., Lucon, C. M. M., & Guzzo, S. D. (2012). Plant growth promotion of common bean and anthracnose control by Trichoderma spp. Pesquisa Agropecuária Brasileira, 47(11), 1589-1595. doi: 10.1590/S0100-204X2012001100005

Spolaor, L. T., Gonçalves, L. S. A., Santos, O. J. A. P. dos, Oliveira, A. L. M. de, Scapim, C. A., Bertagna, F. A. B., & Kuki, M. C. (2016). Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia, 75(1), 33-40. doi: 10.1590/1678-4499.330

Stone, L. F., & Sartorato, A. (1994). O cultivo do feijão: recomendações técnicas. (EMBRAPA-CNPAF. Documentos, 48). Brasília: EMBRAPA-SPI. Recuperado de http://ainfo.cnptia.embrapa.br/digital/ bitstream/CNPAF/11844/1/doc_48.pdf

United States Department of Agriculture (1996). Keys to soil taxonomy. Washington, USDA: Department of Agriculture.

Wang, S., Perez, P. G., Ye, J., & Huang, D. F. (2012). Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World Journal Microbiology Biotechnology, 28(5), 5560-5568. doi: 10.1007/s11274-011-0840-1




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n2p599

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional