Does elevated CO2 affect the biological aspects of Liriomyza sativae in melon plants?

Jéssica de Oliveira Santos, Francislene Angelotti, Tiago Cardoso da Costa-Lima


An increase in the carbon dioxide concentration (CO2) in the atmosphere has occurred in recent years, influencing the different biological aspects of herbivorous insects. The present study aimed to evaluate the effect of CO2 increase on the biological aspects of Liriomyza sativae Blanchard leafminer in melon plants. For this, two experiments were carried out: (i) to evaluate the effect of melon plants grown in CO2-enriched environments on the immature developmental stages of L. sativae and L. sativae adult longevity, and (ii) to verify the impact of increased CO2 concentration on L. sativae adult survival, feeding punctures, and oviposition. The experiments were carried out in growth chambers maintained in the temperature regime of 20-26-33 °C (simulating the minimum, average, and maximum daily temperature) and under two CO2 concentrations (400 ppm and 770 ppm).The immature stages and the egg-adult period of L. sativae were longer when they were grown on plants grown in high CO2 levels (770 ppm), but no difference in adult longevity was observed. The viability of the immature phases was not different between the two CO2 concentrations. Furthermore, there was no difference in the number of eggs and feeding punctures between treatments. Thus, the increase in CO2 concentration prolongs the duration of the immature stages of L. sativae; however, it does not affect their viability. Adult survival, fertility, and feeding punctures were also unmodified by the environment enriched with CO2.


Agromyzidae; Carbon dioxide; Climate change; Cucumis melo; Leafminer.

Full Text:



Akbar, S., Pavani, T., Nagaraja, T., & Sharma, H. C. (2015). Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Nocutuidae: Lepidoptera). Environmental Entomology, 45(1), 229-236. doi: 1093/ee/nvv144

Araujo, W. S., Vieira, M. C., Lewinsohn, T. M., & Almeida, M., Neto. (2015). Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks. PLoS One, 10(1), e0115606. doi: 10.1371/journal.pone.0115606

Auad, A. M., & Fonseca, M. G. das. (2017). A Entomologia nos cenários das mudanças climáticas. In W. Bettiol, E., Hamada, F., A, A. M. Auad,, & R. Ghini (Eds.), Aquecimento global e problema fitossanitários (pp. 93-115). Brasília: EMBRAPA Meio Ambiente.

Auad, A. M., Fonseca, M. G., Resende, T. T., & Maddalena, I. S. C. P. (2012). Effect of climate change on longevity and reproduction of Sipha flava (Hemiptera: Aphididae). Florida Entomologist, 95(2), 433-444. doi: 10.1653/024.095.0227

Boullis, A., Francis, F., & Verheggen, F. (2018). Aphid- hoverfly interactions under elevated CO2 concentrations: oviposition and larval development. Physiological Entomology, 43(3), 245-250. doi: 10. 1111/phen.12253

Chown, S. L., & Nicolson, S. W. (2004). Insect physiological ecology: mechanisms and patterns. Oxford: Oxford University Press.

Costa-Lima, T. C., Geremias, L. D., Begiato, A. M., Chagas, M. C. M. das, & Parra, J. R. P. (2017). Sistema de criação de parasitoide de mosca-minadora. Petrolina: EMBRAPA Semiárido-Circular Técnica (INFOTECA-E).

Costa-Lima, T. C., Geremias, L. D., & Parra, J. R. (2009). Effect of temperature and relative-humidity on the development of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Vigna unguiculata. Neotropical Entomology, 38(6), 727-733. doi: 10.1590/S1519-566X2009000600004

Costa-Lima, T. C., Geremias, L. D., & Parra, J. R. P. (2010). Reproductive activity and survivorship of Liriomyza sativae (Diptera: Agromyzidae) at different temperatures and relative humidity levels. Environmental Entomology, 39(1), 195-201. doi: 10.1603/EN09209

Costa-Lima, T. C., Silva, A. D. C., & Parra, J. R. P. (2015). Moscas-minadoras do gênero Liriomyza (Diptera: Agromyzidae): aspectos taxonômicos e biologia. Petrolina: EMBRAPA Semiárido-Documentos (INFOTECA-E).

DeLucia, E. H., Nabity, P. D., Zavala, J. A., & Berenbaum, M. R. (2012). Climate change: resetting plant-insect interactions. Plant Physiology, 160(4), 1677-1685. doi: 10.1104/pp.112.204750

Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919. doi: 10.1126/science.aat3466

Fonseca, M. G., Santos, D. R., & Auad, A. M. (2014). Impact of different carbon dioxide concentrations in the olfactory response of Sipha flava (Hemiptera: Aphididae) and its predators. Journal of Insect Behavior, 27(6), 722-728. doi: 10.1007/s10905-014-9463-3

Gifford, R. M., Barrett, D., Lutze, J. L., & Samarakoon, A. B. (1996). Agriculture and global change: scaling direct carbon dioxide impacts and feedbacks through time. In B. Walker, & W. Steffen (Eds.,) Global change and terrestrial ecosystems (pp. 229-259). Cambridge: Cambridge University Press.

Goldin, A. (1987). Reassessing the use of loss-on-ignition for estimating organic matter content in noncalcareous soils. Communications in Soil Science and Plant Analysis, 18(10), 1111-1116. doi: 10.10 80/00103628709367886

Hetz, S. K., & Bradley, T. J. (2005). Insects breathe discontinuously to avoid oxygen toxicity. Nature, 433(7025), 516-519. doi: 10.1038/nature03106

Intergovernmental Panel on Climate Change (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional