Cell damage, gas exchange, and growth of Annona squamosa L. under saline water irrigation and potassium fertilization

Eliene Araújo Fernandes, Lauriane Almeida dos Anjos Soares, Geovani Soares de Lima, Alzira Maria de Sousa Silva Neta, Iara Almeida Roque, Francisco Alves da Silva, Pedro Dantas Fernandes, Cassiano Nogueira de Lacerda

Abstract


The semi-arid region of Northeastern Brazil has water limitations in terms of both quantity and quality, with salt stress as a limiting factor for increasing yield in most crops. In this context, the present study aimed to evaluate cell damage, gas exchange, and growth of custard apple under salt stress and potassium fertilization. The research was carried out at the Experimental Farm of CCTA/UFCG, in São Domingos-PB, Brazil. A randomized block design was arranged in a 2 × 5 factorial scheme, with two levels of electrical conductivity of irrigation water (ECw; 1.3 and 4.0 dS m-1) and five potassium doses (10, 15, 20, 25, and 30 g of K2O per plant per year). Water salinity of 4.0 dS m-1 negatively affected the stem diameter and number of leaves in custard apple at 179 and 210 days after transplanting (DAT). The highest relative growth in stem diameter in the period of 179-245 DAT was obtained in plants irrigated with 4.0 dS m-1 water and fertilized with 20 g of K2O per plant. Potassium doses of up to 30 g of K2O resulted in a higher percentage of cell damage and relative water content in custard apple leaf tissue. Water saturation deficit decreased with the increase in K2O doses in plants irrigated with water of 1.3 dS m-1. Irrigation with 1.3 dS m-1 water and estimated K2O doses ranging from 16 to 22 g per plant resulted in an increase in stomatal conductance, transpiration, CO2 assimilation rate, and instantaneous carboxylation efficiency in custard apple plants at 210 DAT.

Keywords


Semi-arid region; Salt stress; Attenuation.

Full Text:

PDF

References


Alam, A., Juraimi, A. S., Rafii, M. Y., & Hamid, A. A. (2015). Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BioMed Research International, 2015(1), 1-15. doi: 10.1155/2015/105695

Alves, L. S., Véras, M. L. M., Melo, S. de, Fº., Irineu, T. H S., & Dias, T. J. (2019). Salinidade na água de irrigação e aplicação de biofertilizante bovino no crescimento e qualidade de mudas de tamarindo. Irriga, 24(2), 254-273. doi: 10.15809/irriga.2019v24n2p254-273

Araújo, H. S., Quadros, B. R. de, Cardoso, A. I. I., & Corrêa, C. V. (2012). Doses de potássio em cobertura na cultura da abóbora. Pesquisa Agropecuária Tropical, 42(4) 469-475. doi: 10.1590/S1983-40632012000 400004

Arzani, A., & Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35(3), 146-189. doi: 10.1080/07352689.2016.1245056

Ataíde, G. M., Flores, A. V., & Borges, E. E. L. (2012). Alterações fisiológicas e bioquímicas em sementes de Pterogyne nitens Tull. durante o envelhecimento artificial. Pesquisa Agropecuária Tropical, 42(1), 71-76. doi: 10.1590/S1983-40632012000100010

Benincasa, M. M. P. (2003). Análise de crescimento de plantas, noções básicas (2a ed.). Jaboticabal, BR: FUNEP.

Bonifácio, B. F., Nobre, R. G., Sousa, A. dos S., Gomes, E. M., Silva, E. M. da, & Sousa, L. de P. (2018). Efeitos da adubação potássica e irrigação com águas salinas no crescimento de porta-enxerto de goiabeira. Revista de Ciências Agrárias, 41(4), 971-980. doi: 10.19084/RCA18119

Cuin, T. A., & Shabala, S. (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment, 30(7) 875-885. doi: 10.1111/j.1365-3040.2007.01674.x

Dalastra, G. M., Echer, M. de M., Guimarães, V. F., Hachmann, T. L., & Inagaki, A. M. (2014). Trocas gasosas e produtividade de três cultivares de meloeiro conduzidas com um e dois frutos por planta. Bragantia, 73(4), 365-371. doi: 10.1590/1678-4499.206

Dias, A. S., Lima, G. S. de, Pinheiro, F. W. A., Gheyi, H. R., & Soares, L. A. dos A. (2019). Gas exchanges, quantum yield and photosynthetic pigments of West Indian cherry under salt stress and potassium fertilization. Revista Caatinga, 32(2), 429-439. doi: 10.1590/1983-21252019v32n216rc

Ferreira, D. F. (2011). SISVAR: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042, 2011. doi: 10.1590/S1413-70542011000600001

Fioreze, S. L., Rodrigues, J. D., Carneiro, J. P. C., Silva, A. A., & Lima, M. B. (2013). Fisiologia e produção da soja tratada com cinetina e cálcio sob déficit hídrico e sombreamento. Pesquisa Agropecuária Brasileira, 48(11) 1432-1439. doi: 10.1590/S0100-204X2013001100003

Gurgel, M. T., Gheyi, H. R., & Oliveira, F. H. T. (2010). Acúmulo de matéria seca e nutrientes em meloeiro produzido sob estresse salino e doses de potássio. Revista Ciência Agronômica, 41(1), 18-28.

Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, S., Mahmud, J. A., Hossen, S.,... Moumita, F. M. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 1-29. doi: 10.3390/agronomy8030031

Heidari, M., & Jamshid, P. (2010). Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. ARPN Journal of Agricultural and Biological Science, 5(6), 39-46.

Inthichack, P., Nishimura, Y., & Fukumoto, Y. (2012). Effect of potassium sources and rates on plant growth, mineral absorption and the incidence of tip burn in cabbage, celery, and lettuce. Horticulture, Environment and Biotechnology, 53(2), 135-142. doi: 10.1007/s13580-012-0126-z

Lemos, E. E. P. de. (2014). The production of Annona fruits in Brazil. Revista Brasileira de Fruticultura, 36(1), 77-85. 2014. doi: 10.1590/S0100-29452014000500009

Lima, G. S. de, Fernandes, C. G. J., Soares, L. A. dos A., Gheyi, H. R., & Fernandes, P. D. (2020). Gas exchange, chloroplast pigments and growth of passion fruit cultivated with saline water and potassium fertilization. Revista Caatinga, 33(1), 184-194. doi: 10.1590/1983-21252020v33n120rc

Lima, G. S. de, Gheyi, H. R., Nobre, R. G., Soares, L. A. dos A, & Santos, J. B. dos. (2019). Cell damage, water status and gas exchanges in castor bean as affected by cationic composition of water. Revista Caatinga, 32(2), 482-492. doi: 10.1590/1983-21252019v32n221rc

Lima, G. S. de, Gheyi, H. R., Nobre, R. G., Soares, L. A. dos A., Xavier, D. A., & Santos, J. A. dos, Jr. (2015). Water relations and gas exchange in castor bean irrigated with saline water of distinct cationic nature. African Journal of Agricultural Research, 10(13), 1581-1594. doi: 10.5897/AJAR2015.9606

Nunes, C. R., Bernardes, N. R., Glória, L. L., & Oliveira, D. B. (2012). Flavonoides em Annonaceae: ocorrência e propriedades biológicas. Vértices, 14(1), 38-57. doi: 10.19180/1809-2667.v14n12012p39-57

Oliveira, W. J. D., Souza, E. R. D., Cunha, J. C., Silva, E. F. F., & Veloso, V. D. L. (2017). Leaf gas exchange in cowpea and CO2 efflux in soil irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(1), 32-37. doi: 10.1590/1807-1929/agriambi.v21n1p32-37

Pereira, M. C. T., Nietsche, S., Costa, M. R., Crane, J. H., Corsato, C. D. A., & Mizobutsi, E. H. (2011). Anonáceas: pinha, atemoia e graviola. Informe Agropecuário, 32(264), 26-34.

Pinheiro, F. W. A., Lima, G. S. de, Gheyi, H. R., Dias, A. S., Moreira, R. C. L., Nobre, R. G., & Soares, L. A. dos A. (2019). Saline water and potassium fertilization in cultivation of grafted West Indian cherry ‘BRS 366 Jaburu’. Bioscience Journal, 35(1), 187-198. doi: 10.14393/BJ-v35n1a2019-41726

Proseus, T. E., & Boyer, J. S. (2012). Pectate chemistry links cell expansion to wall deposition in Chara corallina. Plant Signaling & Behavior, 7(11), 1490-1492. doi: 10.4161/psb.21777

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: Department of Agriculture.

Sá, A. F. L. de, Valeri, S. V., Cruz, M. C. P. da, Barbosa, J. C., Rezende, G. M., & Teixeira, M. P. (2014). Effects of potassium application and soil moisture on the growth of Corymbia citriodora plants. Cerne, 20(4), 645-651. doi: 10.1590/01047760201420041422

Sá, F. V. da S., Brito, M. E. B., Ferreira, I. B., Antônio, P., Neto, Silva, L. de A., & Costa, F. B. da. (2015). Balanço de sais e crescimento inicial de mudas de pinheira (Annona Squamosa L.) sob substratos irrigados com água salina. Irriga, 20(3), 544-556. doi: 10.15809/irriga.2015v20n3p544

Sá, F. V. da S., Gheyi, H. R., Lima, G. S. de, Paiva, E. P. de, Fernandes, P. D., Moreira, R. C. L.,... Ferreira, M., Neto. (2017). Water relations and gas exchanges of West Indian cherry under salt stress and nitrogen and phosphorus doses. Journal of Agricultural Science, 9(10), 168-177. doi: 10.5539/jas.v9n10p168

São José, A. R., Pires, M. M., Freitas, A., Ribeiro, D. P., & Perez, L. A. A. (2014). Atualidades e perspectivas das anonáceas no mundo. Revista Brasileira de Fruticultura, 36(1), 86-93. doi: 10.1590/S0100-29452014 000500010

Schossler, T. R., Machado, D. M., Zuffo, A. M., Andrade, F. R., & Piauilino, A. C. (2012). Salinidade: efeitos na fisiologia e na nutrição mineral de plantas. Enciclopédia Biosfera, 8(15), 1563-1578.

Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Gheyi, H. R., Souza, L. de P., & Veloso, L. L. de S. A. (2019a). Gas exchanges and growth of passion fruit seedlings under salt stress and hydrogen peroxide. Pesquisa Agropecuária Tropical, 49(1), e55671. doi: 10.1590/1983-40632019v4955671

Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Veloso, L. L. de S. A., Gheyi, H. R., & Soares, L. A. dos A. (2019b). Salt stress and exogenous application of hydrogen peroxide on photosynthetic parameters of soursop. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 257-263. doi: 10.1590/1807-1929/agriambi.v23n4p257-263

Silva, A. Q., & Silva, H. (1997). Nutrição e adubação em anonáceas. In A. R. São José, I. V. B. Ouza, O. M. Morais, & T. N. H. Rebouças (Eds.), Anonáceas: produção e mercado pinha, graviola, atemóia e cherimólia. Vitória da Conquista, BR: UESB-DFZ.

Sousa, G. G. de, Viana, T. V. de A., Lacerda, C. F. de, Azevedo, B. M. de, Silva, G. L. da, & Costa, F. R. B. (2014). Estresse salino em plantas de feijão-caupi em solo com fertilizantes orgânicos. Revista Agro@mbiente On-line, 8(3), 359-367. doi: 10.5327/Z 1982-8470201400031824

Sousa, J. R. M. de, Gheyi, H. R., Brito, M. E. B., Xavier, D. A., & Furtado, G. de F. (2016). Impact of saline conditions and nitrogen fertilization on citrus production and gas exchanges. Revista Caatinga, 29(2), 415-424. doi: 10.1590/1983-21252016v29n218rc

Souza, L. P., Lima, G. S. de, Gheyi, H. R., Nobre, R. G., & Soares, L. A. dos A. (2018). Emergence, growth, and production of colored cotton subjected to salt stress and organic fertilization. Revista Caatinga, 31(3), 719-729. doi: 10.1590/1983-21252018v31n322rc

Syvertsen, J. P., & Garcia-Sanchez, F. (2014). Multiple abiotic stresses occurring with salinity stress in citrus. Environmental and Experimental Botany, 103(1), 128-137. doi: 10.1016/j.envexpbot.2013.09.015

Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5a ed.). Porto Alegre, BR: Artemed.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3a ed.). Brasília, BR: EMBRAPA.

Wang, M., Zheng, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370-7390. doi: 10.3390/ijms14047370

Weatherley, P. E. (1950). Studies in the water relations of the cotton plant. I- The field measurements of water deficits in leaves. New Phytologist, 49(1), 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n3p999

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional