Detection and semi-quantification of antibody to feline coronavirus in cats from the microregion of Ilhéus-Itabuna, Bahia, Brazil

Jéssica Fontes Veloso, Leonardo Sauer, Lohana Mehnati Costa e Silva, Samantha Gusmão Pellizzoni, Paula Elisa Brandão Guedes, Renata Santiago Alberto Carlos

Abstract


Feline coronavirus (FCoV) is an important virus that can be differentiated into two serotypes: feline enteric coronavirus (FECoV) and feline infectious peritonitis (FIP) virus (FIPV). Researchers have suggested that a mutation of FECoV to FIPV leads to the emergence of FIP, a disease with worldwide distribution and a high mortality rate. Furthermore, in December 2019, a human infectious disease, coronavirus disease-2019 (COVID-19), which is also caused by a coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged, and clarity regarding its relationship with FCoV remains lacking. Studies have shown that cats are susceptible to infection with this novel coronavirus (i.e., SARS-CoV-2). The aim of the present study was to detect and semi-quantify the presence of feline antibodies to FIPV in cats examined at the Veterinary Hospital of Santa Cruz State University, microregion of Ilhéus and Itabuna, Bahia, Brazil, between January and April 2018. Blood samples were collected from 68 domestic cats to perform complete blood count (CBC) and biochemical tests, and an indirect fluorescent antibody test (IFAT) was used to detect FCoV infection. Of the 68 samples evaluated, seropositivity was observed in 4.4% (3/68) at titers of 1:20; only one sample remained seropositive at titers of 1:40 and 1:80. Two positive animals exhibited CBC and biochemical values within the normal range, while the other positive animals exhibited a mild decrease in platelet count (173,000 uL-1), mild lymphocytosis (7395 uL-1), and mildly increased alkaline phosphatase level (134 uL-1). Twelve months after the tests, none of the positive animals exhibited clinical signs consistent with FIP. Although the IFAT can facilitate diagnosis of FPIV, it cannot be used to differentiate antibodies for the FECoV and FIPV serotypes. Results of the present study demonstrated that FCoV was present in the population studied, and is an important risk factor for the development of FIP. In addition, the new COVID-19 pandemic highlights the importance of studies investigating FCoV because it was not possible to rule out, until now, the possibility of FCoV mutations in infected cats if it encounters SARS-CoV-2.


Keywords


Enteric Coronavirus; Felines; Infectious peritonitis; Serology.

Full Text:

PDF

References


Addie, D. D., Poder, S., Burr, P., Decaro, N., Graham, E., Hofmann-Lehmann, R.,… Meli, M. L. (2015). Utility of feline coronavirus antibody tests. Journal of Feline Medicine and Surgery, 17(2), 152-162. doi: 10.1177/1098612X14538873

Almeida, A. C. S., Galdino, M. V., & Araújo, J. P., Jr. (2019). Seroepidemiological study of feline coronavirus (FCoV) infection in domiciled cats from Botucatu, São Paulo, Brazil. Pesquisa Veterinária Brasileira, 39(2), 129-133. doi: 10.1590/1678-5150-PVB-5706

Baker, D. C. (2015). Diagnóstico das anormalidades de hemostasia. In M. A. Thrall, G. Weiser, R. W. Alison, & T. W. Campbell (Eds.), Hematologia e bioquímica clínica veterinária (2a ed., pp. 399-439). São Paulo: Roca.

Fam, A. L. P. D., Rocha, R. M. V. M., Pimpão, C. T., & Cruz, M. A. (2010). Alterations on leukogram of domestic felines (Felis catus) due to acute and chronic stress. Revista Acadêmica: Ciências Agrárias e Ambientais, 8(3), 299-306. doi: 10.7213/cienciaanimal.v8i3.10898

Felten S., & Hartmann, K. (2019). Diagnosis of feline infectious peritonitis: a review of the current literature. Viruses, 11(11), 1-35. doi: 10.3390/v11111068

Guan, X., Li, H., Han, M., Jia, S., Feng, B., Gao, X.,… Xu, Y. (2020). Epidemiological investigation of feline infectious peritonitis in cats living in Harbin, Northeast China from 2017 to 2019 using a combination of an EvaGreen-based real-time RT-PCR and serum chemistry assays. Molecular and Cellular Probes, 49, 1-9. doi: 10.1016/j.mcp.2019.101495

Holmes, K. V. (1999). Coronaviruses (Coronaviridae). Encyclopedia of Virology, 291-298. doi: 10.1006/ rwvi.1999.0055

Hsie, L., Huang, W., Tang, D., Wang, Y., Chen, C., & Chueh, L. (2013). 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway. Research in Veterinary Science, 95(3), 1241-1247. doi: 10.1016/j.rvsc.2013.08.011

Hsu, L., Lee, C., Green, J. A., Ang, B., Paton, N. I., Lee, L.,… Leo, Y. (2003). Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts. Emerging Infectious Diseases, 9(6), 713-717. doi: 10.3201/eid0906.030264

Johann, J. M., Caetano, C. F., Hass, R., Guim, T. N., Fischer, G., Vargas, G. D.,… Hübner, S. O. (2009). Serum survey for antibodies to coronavirus, herpesvirus, calicivirus, and parvovirus in domestics cats from Rio Grande do Sul, Brazil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61(3), 752-754. doi: 10.1590/S0102-09352009000300033

Kennedy, M. A., Abd-Eldaim, M., Zika, S. E., Mankin, J. M., & Kania, S. A. (2008). Evaluation of antibodies against feline coronavirus 7b protein for diagnosis of feline infectious peritonitis in cats. American Journal of Veterinary Research, 69(9), 1179-1182. doi: 10.2460/ajvr.69.9.1179

Kerr, M. (2003). Exames laboratoriais em medicina veterinária - bioquímica clínica e hematologia (2a ed.). São Paulo: Roca.

Lappin, M. R. (2010). Doenças infecciosas. In R. W. Nelson, & C. G. Couto, Medicina interna de pequenos animais (4a ed., pp. 1339-42). Rio de Janeiro: Elsevier.

Myhrra, L. W., Silva, F. M. F., Vidigal, P. M. P., Resende, M., Bressan, G. C., Fietto, J. L. R.,... Almeida, M. R. (2019). Feline coronavirus isolates from a part of Brazil: insights into molecular epidemiology and phylogeny inferred from the 7b gene. The Journal of Veterinary Medical Science, 81(10), 1455-1460. doi: 10.1292/jvms.19-0090

Nibblett, B. M., Ketzis, J. K., & Grigg, E. K. (2015). Comparison of stress exhibited by cats examined in a clinicversus a home setting. Applied Animal Behaviour Science, 173, 68-75. doi: 10.1016/j.applanim. 2014.10.005

Pedersen, N. C. (2009). A review of feline infectious peritonitis virus infection: 1963-2008. Journal of Feline Medicine and Surgery, 11(4), 225-258. doi: 10.1016/j.jfms.2008.09.008

Pedersen, N. C., Allen, C. E., & Lyons, L. A. (2008). Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery, 10(6), 529-541. doi: 10.1016/j.jfms.2008.02.006

Pratelli, A. (2008). Comparison of serologic techniques for detection of antibodies against feline coronaviruses. Journal of Veterinary Diagnostic Investigation, 20(1), 45-50. doi: 10.1177/1040638708 02000108

Riemer, F., Kuehner, K. A., Ritz, S., Sauter-Louis, C., & Hartmann, K. (2016). Clinical and laboratory features of cats with feline infectious peritonitis - a retrospective study of 231 confirmed cases (2000-2010). Journal of Feline Medicine and Surgery, 18(4), 348-356. doi: 10.1177/1098612X15586209

Sangl, L., Matiasek, K., Felten, S., Gründl, S., Bergmann, M., Balzer, H.,… Hartmann, K. (2019). Detection of feline coronavirus mutations in paraffin-embedded tissues in cats with feline infectious peritonitis and controls. Journal of Feline Medicine and Surgery, 21(2), 133-142. doi: 10.1177/1098612X 187628 83

SanJuán, R., & Domingo-Calap, P. (2019). Genetic diversity and evolution of viral populations. Reference Module in Life Sciences, 1-9. doi: 10.1016/B978-0-12-809633-8.20958-8

Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Liu, R.,… Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2. Science, 368(6494), 1-10. doi: 10.1126/ science.abb7015

Sparkes, A. H. (2006). Infecção por coronavírus felino. In E. A. Chandler, C. J. Gaskell, & R. M. Gaskell (Eds.), Clínica e terapêutica em felinos (3a ed., pp. 508-518). São Paulo: Roca.

Thrall, M. A. (2006). Hematologia e bioquímica clínica veterinária. São Paulo: Roca.

Vennema, H., Poland, A., Foley, J., & Pedersen, N. C. (1998). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology, 243(1), 150-157. doi: 10.1006/viro.1998. 9045

Vogel, L., Van der Lubben, M., Lintelo, E. G., Bekker, C. P. J., Geerts, T., Schuijff, L. S.,… Rottier, P. J. M. (2010). Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Veterinary Research, 41(71), 1-12. doi: 10.1051/vetres/2010043

Wang, H., Hirabayashi, M., Chambers, J. K., Uchida, K., & Nakayama, H. J. (2018). Immunohistochemical studies on meningoencephalitis in feline infectious peritonitis (FIP). The Journal of Veterinary Medical Science, 80(12), 1813-1817. doi: 10.1292/jvms.18-0406

Weiser, G. (2015). Tecnologia laboratorial em medicina veterinária. In M. A. Thrall, G. Weiser, R. W. Alison, & T. W. Campbell (Eds.), Hematologia e bioquímica clínica veterinária (2a ed., pp. 22-305). São Paulo: Roca.

Zumla, A., Hui, D. S., & Perlman, S. (2015). Middle East respiratory syndrome. Seminar, 386, 995-1007. doi: 10.1016/S0140-6736(15)60454-8




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n2p747

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional