Resistance profile and virulence characterization of Escherichia coli isolated from diarrheic neonatal farm animals

Raffaella Menegheti Mainardi, Arthur Roberto da Costa, Roberta Torres Chideroli, Leonardo Mantovani Favero, Amauri Alcindo Alfieri, Ulisses de Pádua Pereira

Abstract


Neonatal diarrhea is the main cause of early mortality and morbidity in farm animals and the source of huge, direct and indirect, economic husbandry losses. Escherichia coli, a common harmless commensal bacterium, can turn into a main diarrheal pathogen through antibiotic resistance and the expression of genetically acquired virulence factors. In this study, fecal samples obtained from eight farms of animals with clinical signs characteristic of diarrhea were subjected to culture and bacterial isolation. Colonies suggestive of E. coli were identified through morphological and biochemical characteristics. Susceptibility tests to the main veterinary antibacterial agents were conducted using agar disk diffusion followed by phenotypical detection of extended-spectrum ?-lactamase (ESBL). A total of 301 colonies were characterized as E. coli and, out of the 192 that were tested, 134 showed resistance to three or more classes of antimicrobial drugs and were classified as multidrug resistant (MDR), and 14 were ESBL positive. Bacterial DNA was extracted for multiplex PCR (mPCR) using primers to detect ten different genes of diarrheagenic E. coli (DEC). Thirty-six bacterial strains were positive in the mPCR assay, 28 of which were classified as enterotoxigenic E. coli (ETEC) and eight as enteropathogenic E. coli (EPEC). The high prevalence of MDR strains and the detection of ESBL denote the presence of resistance genes in animal husbandry; thus, it is important to isolate and characterize those pathogens and test antimicrobial sensitivity in vitro to avoid ineffective treatments and the spread of antimicrobial resistance, which are the major concerns of Public Health and One Health.

Keywords


ESBL; E.coli; Farm animals; Multidrug resistant bacteria; mPCR; Neonatal diarrhea.

Full Text:

PDF

References


Abayneh, M., Tesfaw, G., & Abdissa, A. (2018). Isolation of Extended-Spectrum ?-lactamase-(ESBL-) Producing Escherichia coli and Klebsiella pneumoniae from Patients with Community-Onset Urinary Tract Infections in Jimma University Specialized Hospital, Southwest Ethiopia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018. https://doi.org/10.1155/2018/4846159

Aref, N. E. M., Abdel-Raheem, A. R. A., Kamaly, H. F., & Hussien, S. Z. (2018). Clinical and sero-molecular characterization of escherichia coli with an emphasis on hybrid strain in healthy and diarrheic neonatal calves in Egypt. Open Veterinary Journal, 8(4), 351–359. https://doi.org/10.4314/ovj.v8i4.1

Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. Journal of Pathogens, 2016, 1–5. https://doi.org/10.1155/2016/4065603

Blanco, M., Blanco, J. E., Rodríguez, E., Abalia, I., Alonso, M. P., & Blanco, J. (1997). Detection of virulence genes in uropathogenic Escherichia coli by polymerase chain reaction (PCR): Comparison with results obtained using phenotypic methods. Journal of Microbiological Methods, 31(1–2), 37–43. https://doi.org/10.1016/S0167-7012(97)00087-0

Capasso, C., & Supuran, C. T. (2014). Sulfa and trimethoprim-like drugs-antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 379–387. https://doi.org/10.3109/14756366.2013.787422

Cho, Y. il, & Yoon, K. J. (2014). An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. Journal of Veterinary Science, 15(1), 1–17. https://doi.org/10.4142/jvs.2014.15.1.1

CLSI. (2019). Performance standards for antimicrobial susceptibility testing. In Clinical Microbiology Newsletter (29th ed.). Clinical and Laboratory Standards Institute. https://doi.org/10.1016/s0196-4399(01)88009-0

Coura, F. M., Lage, A. P., & Heinemann, M. B. (2014). Patotipos de Escherichia coli causadores de diarreia em bezerros: Uma atualização. Pesquisa Veterinaria Brasileira, 34(9), 811–818. https://doi.org/10.1590/s0100-736x2014000900001

De Souza, M., Pinto, F. G. D. S., Fruet, T. K., Piana, P. A., & De Moura, A. C. (2014). Water quality indicators for environmental and resistance profile of escherichia coli strains isolated in rio Cascavel, Paraná, Brazil. Engenharia Agricola, 34(2), 352–362. https://doi.org/10.1590/S0100-69162014000200016

Dubreuil, D. J., Isaacson, R. E., & Schifferli, D. M. (2016). Animal Enterotoxigenic Escherichia coli. EcoSal Plus, 7(1), 1–26. https://doi.org/10.1007/978-3-319-45092-6_1

Fujioka, M., Otomo, Y., & Ahsan, C. R. (2013). A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli. Journal of Microbiological Methods, 92(3), 289–292. https://doi.org/10.1016/j.mimet.2012.12.010

Gomes, T. A. T., Elias, W. P., Scaletsky, I. C. A., Guth, B. E. C., Rodrigues, J. F., Piazza, R. M. F., Ferreira, L. C. S., & Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology, 47, 3–30. https://doi.org/10.1016/j.bjm.2016.10.015

Ibrahim, D. R., Dodd, C. E. R., Stekel, D. J., Ramsden, S. J., & Hobman, J. L. (2016). Multidrug resistant, extended spectrum ?-lactamase (ESBL)-producing Escherichia coli isolated from a dairy farm. FEMS Microbiology Ecology, 92(4), 1–13. https://doi.org/10.1093/femsec/fiw013

Jafari, F., Hamidian, M., Rezadehbashi, M., Doyle, M., Salmanzadeh-ahrabi, S., Derakhshan, F., & Zali, M. R. (2009). Prevalence and antimicrobial resistance of diarrheagenic Escherichia coli and Shigella species associated with acute diarrhea in Tehran, Iran. Canadian Journal of Infectious Diseases and Medical Microbiology, 20(3). https://doi.org/10.1155/2009/341275

Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), 123–140. https://doi.org/10.1038/nrmicro818

Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1), 4–22. https://doi.org/10.1177/003335491212700103

MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510–514. https://doi.org/10.1038/s41558-018-0161-6

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Mobarki, N., Almerabi, B., & Hattan, A. (2019). Antibiotic Resistance Crisis. International Journal of Medicine in Developing Countries, 40(4), 561–564. https://doi.org/10.24911/ijmdc.51-1549060699

Olivo, G., Lucas, T. M., Borges, A. S., Silva, R. O. S., Lobato, F. C. F., Siqueira, A. K., Da Silva Leite, D., Brandão, P. E., Gregori, F., De Oliveira-Filho, J. P., Takai, S., & Ribeiro, M. G. (2016). Enteric Pathogens and Coinfections in Foals with and without Diarrhea. BioMed Research International, 2016. https://doi.org/10.1155/2016/1512690

Palmeira, J. D., & Ferreira, H. M. N. (2020). Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world. Heliyon, 6(1), e03206. https://doi.org/10.1016/j.heliyon.2020.e03206

Pereira-Maia, E. C., Silva, P. P., De Almeida, W. B., Dos Santos, H. F., Marcial, B. L., Ruggiero, R., & Guerra, W. (2010). Tetraciclinas e glicilciclinas: Uma visão geral. Quimica Nova, 33(3), 700–706. https://doi.org/10.1590/s0100-40422010000300038

Thiry, D., Saulmont, M., Takaki, S., De Rauw, K., Duprez, J. N., Iguchi, A., Piérard, D., & Mainil, J. G. (2017). Enteropathogenic Escherichia coli O80:H2 in young calves with diarrhea, Belgium. Emerging Infectious Diseases, 23(12), 2093–2095. https://doi.org/10.3201/eid2312.170450

Trabulsi, L. ., & Alterthum, F. (2015). Microbiologia (6th ed.). Editora Atheneu.

Tsang, J. (2017). Bacterial plasmid addiction systems and their implications for antibiotic drug development. Postdoc Journal, 5(5), 3–9. https://doi.org/10.1016/j.physbeh.2017.03.040

Valentin, L., Sharp, H., Hille, K., Seibt, U., Fischer, J., Pfeifer, Y., Michael, G. B., Nickel, S., Schmiedel, J., Falgenhauer, L., Friese, A., Bauerfeind, R., Roesler, U., Imirzalioglu, C., Chakraborty, T., Helmuth, R., Valenza, G., Werner, G., Schwarz, S., … Käsbohrer, A. (2014). Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. International Journal of Medical Microbiology?: IJMM, 304(7), 805–816. https://doi.org/10.1016/j.ijmm.2014.07.015

Windels, E. M., Michiels, J. E., van den Bergh, B., Fauvart, M., & Michiels, J. (2019). Antibiotics: Combatting tolerance to stop resistance. MBio, 10(5), 1–7. https://doi.org/10.1128/mBio.02095-19




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n2p735

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional