Application of chemical compounds during pre-harvesting to control post-harvesting green mold in citrus

Marines Batalha Moreno Kirinus, Keilor da Rosa Dorneles, Pricila Santos Silva, Caroline Farias Barreto, Roberto Pedroso Oliveira, Marcelo Barbosa Malgarim


This study aimed to evaluate the effect of system-acquired resistance inducing compounds applied during the pre-harvest of ‘Navelina’ orange and ‘Ortanique’ tangor in controlling post-harvest disease caused by Penicillium digitatum. The products applied were acibenzolar-s-methyl (ASM), imidacloprid (IMI), methyl jasmonate (MeJa), sodium selenite, potassium silicate, and thiamethoxam (TMT). Sterile distilled water was used as the control. The applications were administered 45, 30, and 15 days before harvesting. In 2015 and 2016, 840 fruits were randomly collected, and when they reached commercial maturation, they were sanitized, half were pierced with a needle in the equatorial region. The fruits were inoculated with a 10 µL spore suspension (1 × 106 conidia mL-1) of P. digitatum, in the equatorial region. The experiment was performed with three replicates, each comprising 10 fruits and repeated over two consecutive crop seasons. Disease incidence was evaluated on pierced (at 72 and 144 h after inoculation [hai]) and unperforated (at 360 hai) fruits. For pierced fruits, lesion expansion rate (rL), disease severity, expansion rate of sporulating area (rE), and sporulating area were evaluated. The area under the disease progress curve (AUDPC) and the area under the sporulating area progress curve were calculated. Both cultivars were susceptible; however, the rL and rE had lower values for 'Ortanique'. The tested products reduced the disease incidence in both cultivars. Potassium silicate reduced rL and rE, whereas sodium selenite reduced rE. The disease severity was reduced by potassium silicate, sodium selenite, and ASM. AUDPC was reduced by sodium selenite and potassium silicate treatments. Among the tested products, potassium silicate and sodium selenite applied during the pre-harvest of 'Navelina' orange and 'Ortanique' tangor had the highest reductions for disease incidence (ranging from 14% to 37%, respectively) and severity (60% and 70%, respectively), rE (50% for both compounds), and total sporulating area (55% and 56%, respectively), reducing the green mold in post-harvested fruits caused by P. digitatum.


Alternative control; Citrus sinensis; Citrus reticulata; Penicillium digitatum; System-acquired resistance.

Full Text:



Amelio, R. D., Marzachi, C., & Bosco, D. (2010). Activity of benzothiadiazole on chrysanthemum yellows phytoplasma (‘Candidatus Phytoplasma asteris’) infection in daisy plants. Journal Crop Protection 29(10), 1094-1099. doi: 10.1016/j.cropro.2010.03.011

Bagio, T. Z., Canteri, M. G., Barreto, T. P., & Leite, R. P., Jr. (2016). Activation of systemic acquired resistance in citrus to control huanglongbing disease. Semina: Ciências Agrárias, 37(4), 1757-1766. doi: 10.5433/1679-0359.2016v37n4p1757

Ballester, A. R., Lafuente, M. T., Vos, R. C. H., Bovy, A. G., & Gonzáles-Candelas, L. (2013). Citrus phenylpropanoids and defence against pathogens. Part I: Metabolic profiling in elicited fruits. Food Chemistry, 136(1), 178-185. doi: 10.1016/j.foodchem.2012.07.114

Barbasso, D. V., Pedro, M. J., Jr., & Pio, R. M. (2005). Caracterização fenológica de variedades do tipo Murcott em três porta-enxertos. Revista Brasileira Fruticultura, 27(3), 399-403. doi: 10.1590/S0100-29452005000300015

Cai, Y., Cao, S., Yang, Z., & Zheng, Y. (2011). MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit. Postharvest Biology Technology, 59(3), 324-326. doi: 10.1016/j.postharvbio.2010.08.020

Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: John Wiley.

Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2014). Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit. Food Chemistry, 163, 92-96. doi: 10.1016/j.foodchem. 2014.04.084

United States Department of Agriculture (2021). Citrus: World Markets and Trade. Washington, DC: Foreign Agricultural Service. Retrieved from

Conceição, C. S., Felix, K. C. S., Mariano, R. L. R., Medeiros, E. V., & Souza, E. B. (2014). Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon. Scientia Horticulturae, 174, 164-170. doi: 10.1016/j.scienta.2014.05.027

Costa, J. H., Bazioli, J. M., Pontes, J. G. M., & Fill, T. P. (2019). Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biology, 123(2019), 584-593. doi: 10.1016/j. funbio.2019.05.004

Dallagnol, L. J., Rodrigues, F. A., Pascholati, S. F., Fortunato, A. A., & Camargo, L. E. A. (2015). Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. Plant Pathology, 64, 1085-1093. doi: 10.1111/ppa.12346

Debona, D.., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 55, 85-107. doi: 10.1146/annurev-phyto-080516-035312

Fallanaj, F., Ippolito, A., Ligorio, A., Garganese, F., Zavanell, A. C., & Sanzani, S. M. (2016). Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defence responses against green mould in citrus fruit. Postharvest Biology and Technology, 115, 18-29. doi: 10.1016/j.postharvbio.2015.12.009

Fischer, I. H., Palharini, M. C. A., Spósito, M. B., & Amorim, L. (2013). Postharvest diseases in ‘Pera’ Orange cultivates in organic and conventional systems and resistance of Penicillium digitatum to fungicides. Summa Phytopathologica, 39(1), 28-39. doi: 10.1590/S0100-54052013000100005

Ghooshkhaneh, N. G., Golzarian, M. R., & Mamarabadi, M. (2018). Detection and classification of citrus green mold caused by Penecillium digitatum using multispectral imaging. Journal of the Science of Food and Agriculture, 98(9), 3542-3550. doi: 10.1002/jsfa.8865

Goulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends in Food Science & Technology, 19(1), 4-25. doi: 10.1016/j.tifs.2007.07.002

Graham, J. H., & Myers, M. E. (2011). Soil application of SAR inducers imidacloprid, thiamethoxam, and acibenzolar-S-methyl for citrus canker control in young grapefruit trees. Plant Disease, 95(6), 720-729. doi: 10.1094/PDIS-09-10-0653

Graham, J. H., & Myers, M. E. (2016). Evaluation of soil applied systemic acquired resistance inducers integrated with copper bactericide sprays for control of citrus canker on bearing grapefruit trees. Journal Crop Protection, 90, 157-162. doi: 10.1016/j.cropro.2016.09.002

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In P. Ahmad, & S. Rasool, Emerging techonologies and management of crop stress tolerance (Chapter 16, pp. 377-422). New Delhi: Biological Techniques.

Hua, L., Jiangtao, S. Y. H., Chunqiang, L., Mijing, J., Zhengke, Z., & Jingping, R. (2017). The effect of 1-methylcyclopropene, methyl jasmonate and methyl salicylate on lignin accumulation and gene expression in postharvest ‘Xuxiang’ kiwifruit during cold storage. Postharvest Biology and Technology, 124, 107-118. doi: 10.1016/j.postharvbio.2016.10.003

Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Ashraf, A., Shahzad, S. M., & Yousaf, B. (2016). Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. Journal of Environmental Management, 183(3), 521-529. doi: 10.1016/j.jenvman.2016.09.009

Instituto Nacional de Meteorologia (2019). Boletim Agroclimatológico Anual. Retrieved from http:/ www.

Kirinus, M. B. M., Barreto, C. F., Silva, P. S., Oliveira, R. P., Malgarim, M. B., & Fachinello, J. C. (2018). ‘Navelina’ orange submitted to pre-harvest resistance inducers. Acta Scientiarum Agronomy, 40(1), e39465. doi: 10.4025/actasciagron.v40i1.39465

Köppen, W., & Geiger, R. (1928). Klimate der erde. Gotha: Verlag Justus Perthes.

Ladaniya, M. S. (2010). Citrus fruit: biology, technology, and evaluation. Goa: Academic Press.

Laranjeira, F. F., Amorim, L., Bergamin, A., Fº., & Aguilar-Vildoso, C. I. (2002). Controle de doenças causadas por fungos e bactérias em citros. In L. Zambolim, F. X. Ribeiro do Vale, A. J. A. Monteiro, & H. Costa (Eds.), Controle de doenças de plantas: frutíferas (pp. 141-246). Viçosa, MG: Imprensa Universitária.

Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M., & Droby, S. (2007). Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology, 97(11), 1491-1500. doi: 10.1094/PHYTO-97-11-1491

Menegon, A. P., Forcelini, C. A., & Fernandes, J. M. C. (2005). Expansão de lesão por manchas foliares em cevada e sua interação com a aplicação foliar de fungicidas. Fitopatologia Brasileira, 30(2), 134-138. doi: 10.1590/S0100-41582005000200005

Moosa, A., Sahi, S. T., Khan, S. A., & Malik, A. U. (2019). Salicylic acid and jasmonic acid can suppress green and blue moulds of citrus fruit and induce the activity of polyphenol oxidase and peroxidase. Folia Horticulturae, 31(1), 195-204. doi: 10.2478/fhort-2019-0014

Morton, J. (1987). Tangor. In J. F. Morton, Fruits of warm climate (pp. 145-146). Miami: Echo Point Books & Media.

Rocha, A. C. R. Neto, Maraschi, M., & Di Piero, R. M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International Journal of Food Microbiology, 215(2015), 64-70. doi: 10.1016/j.ijfoodmicro.2015.08.018

Palou, L. (2014). Penicillium digitatum, Penicillium italicum. In S. Banos-Bautista (Ed.), Postharvest decay, control strategies (pp. 45-102). Cambridge: Academic Press.

Perez, M. F., Ibarreche, J. P., Isas, A. S., Sepulveda, M., Ramallo, J., & Dib, J. R. (2017). Antagonistic yeasts for the biological controlo f Penicillium digitatum on lemons stored under export conditions. Biological Control, 115, 135-140. doi: 10.1016/j.biocontrol.2017.10.006

Qing-Yan, G., Jiao, J., Meng, L., Wei, W., Cheng-Bo, G., Yu-Jie, F., & Wei, M. (2016). Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochemistry, 51(5), 642-649. doi: 10.1016/j.procbio.2016.01.012

Quaglia, M., Ederli, L., Pasqualini, S., & Zazzerini, A. (2011). Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. on apple fruit. Postharvest Biology and Technology, 59(3), 307-315. doi: 10.1016/j.postharvbio.2010.09.007

Reis, M. A., Arf, O., Silva, M. G., Sá, M. E., & Buzetti, S. (2008). Aplicação de silício em arroz de terras altas irrigado por aspersão. Acta Scientiarum Agronomy, 30(1), 37-43. doi: 10.4025/actasciagron.v30 i1.1126

Rodrigues, F. A., Resende, R. S., Dallagnol, L. J., & Datnoff, L. (2015). Silicon potentiates host defense mechanisms against infection by plant pathogens. In F. Rodrigues, & L. Datnoff (Eds.), Silicon and plant diseases (pp. 109-138). Basel, Switzerland: Springer Nature

Sánchez-Torres, P., & Tuset, J. J. (2011). Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biology and Technology, 59(2), 159-165. doi: 10.1016/j.postharvbio.2010.08.017

Shaner, G., & Finney, R. E. (1977). Effect of nitrogen fertilization on expression of slow-mildewing resistance in knox wheat. Phytopathology, 67, 1051-1056. doi: 10.1094/Phyto-67-1051

Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. Plos One, 7(7), e40863. doi: 10.1371/journal.pone.0040863

Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44(6), 1920-1934. doi: 10.2135/cropsci2004.1920

Zhichao, W., Fuhua, W., Shuai, L., Yingqiong, D., Furong, L., Ruiying, D., Jie, Z. (2016). Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris) L. ssp. Chinensisvar. utilis) under cadmium stress. Environmental and Experimental Botany, 131, 173-180. doi: 10.1016/j.envexpbot. 2016.07.012

Zhu, Z., Chen, Y., Shi, G., & Zhang, X. (2017). Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry, 219, 179-184. doi: 10. 1016/j.foodchem.2016.09.138


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional