Influência da maturação a seco e a vácuo na qualidade e segurança microbiológica da carne

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n1p155

Palavras-chave:

Coliformes, Escherichia coli, Listeria monocytogenes, Patógenos alimentares, Psicrotróficos.

Resumo

A maturação da carne agrega características sensoriais desejáveis ao consumidor. Os métodos mais utilizados são a vácuo (wet-aged) e à seco (dry-aged), que podem influenciar na qualidade e segurança microbiológica da carne para o consumo. O objetivo desse estudo foi verificar as diferenças de qualidade microbiológica entre cortes de contra-filé (Longissimus dorsi) maturados a vácuo e a seco por 30 dias, através da quantificação de grupos de micro-organismos indicadores e identificação molecular de Samonella, Listeria monocytogenes e Escherichia coli diarreiogênica. A carne maturada a seco apresentou contagens significativamente menores de coliformes totais, aeróbios mesófilos, psicrotróficos e bolores e leveduras em relação à carne maturada a vácuo. Salmonella spp. não foi isolada de nenhuma das amostras de carne analisadas. L. monocytogenes e E. coli enteropatogênica (EPEC), E. coli produtora de toxina shiga (STEC) e E. coli enterohemorrágica (EHEC) foram identificadas somente das carnes maturadas a vácuo. A desidratação superficial das peças durante a maturação a seco, desde que realizada de forma correta e higiênica, pode conferir maior qualidade e menor risco microbiológico para o consumo.

Métricas

Carregando Métricas ...

Biografia do Autor

José Carlos Ribeiro Júnior, Universidade Federal do Tocantins

Prof., Universidade Federal do Tocantins, UFT, Escola de Medicina Veterinária e Zootecnia, EMVZ, Campus universitário de Araguaína, Araguaína, TO, Brasil.

Isac Gabriel Cunha dos Santos, Universidade Federal do Tocantins

Discente do Curso de Mestrado do Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, PPGSaspt, UFT, Araguaína, TO, Brasil.

Bianca Pereira Dias, Universidade Federal do Tocantins

Discente do Curso de Graduação em Medicina Veterinária, UFT, Araguaína, TO, Brasil.

Wescley Faccini Augusto, Universidade Federal do Tocantins

Pós-Doutorando do Programa de Pós-Graduação em Ciência Animal Tropical, PPGCAT, UFT, Araguaína, TO, Brasil.

Ézio Machado Rodrigues, Universidade Federal do Tocantins

Discente do Curso de Mestrado do Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, PPGSaspt, UFT, Araguaína, TO, Brasil.

Fabrícia Rocha Chaves Miotto, Universidade Federal do Tocantins

Profa, Universidade Federal do Tocantins, UFT, Escola de Medicina Veterinária e Zootecnia, EMVZ, Campus universitário de Araguaína, Araguaína, TO, Brasil.

Referências

Alnajrani, M., Hanlon, K., English, A., Fermin, K., Brashears, M. M., & Echeverry, A. (2018). Comparing the recovery of indicator microorganisms from beef trimmings using swabbing, rinsing, and grinding methodologies. Meat and Muscle Biology, 2(1), 154-161. doi: 10.22175/mmb2017.09.0047

Althaus, D., Zweifel, C., & Stephan, R. (2017). Analysis of a poultry slaughter process: influence of process stages on the microbiological contamination of broiler carcasses. Italian Journal of Food Safety, 6(4), 190-194. doi: 10.4081/ijfs.2017.7097

ANVISA. Agência Nacional de Vigilância Sanitária (2001). Resolução-RDC n°12, de 02/01/01. Regulamento Técnico sobre Padrões Microbiológicos para Alimentos. Diário Oficial da União, 1, 45-53.

ANVISA. Agência Nacional de Vigilância Sanitária (2019). Instrução normativa n° 60, de 23/12/2019. Padrões microbiológicos para alimentos. Diário Oficial da União, 249, 133.

Chen, Y., & Knabel, S. J. (2007). Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Applied and Environmental Microbiology, 73(19), 6299-6304. doi: 10.1128/AEM.00961-07

Damez, J. L., & Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Science, 80(1), 132-149. doi: 10.1016/j.meatsci.2008.05.039

Dashdorj, D., Tripathi, V. K., Cho, S., Kim, Y., & Hwang, I. (2016). Dry aging of beef; Review. Journal of Animal Science and Technology, 58(20), 20. doi: 10.1186/s40781-016-0101-9

Dufour, A. P. (1977). Escherichia coli: the fecal coliform. Bacterial indicators/health hazards associated with water (pp. 48-58). Philadelphia: ASTM International.

Etcheverría, A. I., Padola, N. L., Sanz, M. E., Polifroni, R., Krüger, A., Passucci, J.,… Parma, A. E. (2010). Occurrence of Shiga toxin-producing E. coli (STEC) on carcasses and retail beef cuts in the marketing chain of beef in Argentina. Meat Science, 86(2), 418-421. doi: 10.1016/j.meatsci.2010.05.027

International Organization for Standardization (2002). ISO 6579. Microbiology of food and animal feeding stuffs - horizontal method for detection of Salmonella spp. (4nd ed.). Amendment 1:2007.

International Organization for Standardization (2004). ISO 11290-1:1996. Microbiology of food and animal feeding stuffs - horizontal method for the detection and enumeration of Listeria monocytogenes. Part 1: Detection method. Amendment 1:2004.

Kornacki, J. L., Gurtler, J. B., & Stawick, B. A (2015). American Public Health Association Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. Chapter 9. In Compendium of Methods for the Microbiological Examination of Foods.

Koutsoumanis, K., & Sofos, J. N. (2004). Microbial contamination of carcasses and cuts. Encyclopedia of Meat Sciences, 67(1), 1624-1629. doi: 10.1016/B0-12-464970-X/00070-2

Lautenschlaeger, R. (2012). Latest trends in beef maturation-Dry-aged versus wet-aged beef. Proceedings of the 58th International Congress of Meat Science and Technology, International Competence Center on Meat Quality, Department of Safety and Quality of Meat, Max Rubner-Institut, Germany.

Lee, H. J., Yoon, J. W., Kim, M., Oh, H., Yoon, Y., & Jo, C. (2019). Changes in microbial composition on the crust by different air flow velocities and their effect on sensory properties of dry-aged beef. Meat Science, 153(1), 152-158. doi: 10.1016/j.meatsci.2019.03.019.

Liu, D., Ainsworth, A. J., Austin, F. W., & Lawrence, M. L. (2004). Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. International Journal of Food Microbiology, 91(3), 297-304. doi: 10.1016/j.ijfoodmicro.2003.07.004

Marty, E., Buchs, J., Eugster-Meier, E., Lacroix, C., & Meile, L. (2012). Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR-RFLP. Food Microbiology, 29(2), 157-166. doi: 10.1016/j.fm.2011.09.011

Mateus, K. A., Santos, M. R., Viana, L. R., Camillo, D. M., & Kessler, J. D. (2018). Período de maturação promove alterações dos parâmetros físico-químicos e microbiológicos da carne bovina submetida a vácuo. Revista de Ciências Agroveterinárias, 17(4), 599-602. doi: 10.5965/223811711732018599

Mezali, L., Mebkhout, F., Nouichi, S., Boudjellaba, S., & Hamdi, T. M. (2019). Serotype diversity and slaughterhouse-level risk factors related to Salmonella contamination on poultry carcasses in Algiers. The Journal of Infection in Developing Countries, 13(5), 384-393. doi: 10.3855/jidc.10450

Monsón, F., Sañudo, C., & Sierra, I. (2005). Influence of breed and ageing time on the sensory meat quality and consumer acceptability in intensively reared beef. Meat Science, 71(3), 471-479. doi: 10.1016/j. meatsci.2005.04.026

Ortigues-Marty, I., Thomas, E., Prévéraud, D. P., Girard, C. L., Bauchart, D., Durand, D., & Peyron, A. (2006). Influence of maturation and cooking treatments on the nutritional value of bovine meats: Water losses and vitamin B12. Meat Science, 73(3), 451-458. doi: 10.1016/j.meatsci.2006.01.003

Paton, A. W., & Paton, J. C. (1998). Detection and characterization of shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. Journal of Clinical Microbiology, 36(2), 598-602. doi: 10.1128/JCM.36.2.598-602.1998

Pesciaroli, M., Cucco, L., De Luca, S., Massacci, F. R., Maresca, C., Medici, L.,... Magistrali, C. F. (2017). Association between pigs with high caecal Salmonella loads and carcass contamination. International Journal of Food Microbiology, 242(1), 82-86. doi: 10.1016/j.ijfoodmicro.2016.11.021

Pidcock, K., Heard, G. M., & Henriksson, A. (2002). Application of nontraditional meat starter cultures in production of Hungarian salami. International Journal of Food Microbiology, 76(1), 75-81. doi: 10.1016/ S0168-1605(02)00002-8

Radoshevich, L., & Cossart, P. (2018). Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology, 16(1), 32-46. doi: 10.1038/nrmicro.2017.126

Ribeiro, J. C., Jr., Silva, F. F., Lima, J. B. A., Ossugui, E. H., Teider, P. I., Jr., Campos, A. C. L. P.,... Beloti, V. (2019). Molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. Journal of Dairy Science, 102(12), 10850-10854. doi: 10.3168/jds.2019-16732

Ribeiro, J. C., Jr., Tamanini, R., Soares, B. F., Oliveira, A. M., Silva, F. G., Silva, F. F.,... Beloti, V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina: Ciências Agrárias, 37(5), 3069-3078. doi: 10.5433/1679-0359.2016v37n5 p3069

Rodríguez López, P., Bernárdez, M., Rodríguez-Herrera, J. J., Comesaña, Á. S., & Cabo, M. L. (2019). Identification and metagenetic characterisation of Listeria monocytogenes-harbouring communities present in food-related industrial environments. Food Control, 95(1), 6-17. doi: 10.1016/j.foodcont.2018. 07.023

Ryser, E. T., & Schuman, J. D (2015). American Public Health Association. Mesophilic aerobic plate count. Chapter 8. In Compendium of Methods for the Microbiological Examination of Foods.

Schäfer, D. F., Steffens, J., Barbosa, J., Zeni, J., Paroul, N., Valduga, E.,… Cansian, R. L. (2017). Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT, 86(1), 393-398. doi: 10.1016/j.lwt.2017.08.024

Shanmugasamy, M., Velayutham, T., & Rajeswar, J. (2011). Inv A gene specific PCR for detection of Salmonella from broilers. Veterinary World, 4(12), 562-564. doi: 10.5455/vetworld.2011.562-564

Van Ba, H., Seo, H. W., Pil-Nam, S., Kim, Y. S., Park, B. Y., Moon, S. S.,… Kim, J. H. (2018). The effects of pre-and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses. Meat Science, 137(1), 16-23. doi: 10.1016/j.meatsci.2017.11.006

Vasavada, P. C., & Critzer, F. J (2015). American Public Health Association. Psychrotrophic Microorganisms. Chapter 13. In Compendium of Methods for the Microbiological Examination of Foods.

Downloads

Publicado

2021-01-19

Como Citar

Ribeiro Júnior, J. C., Santos, I. G. C. dos, Dias, B. P., Augusto, W. F., Rodrigues, Ézio M., & Miotto, F. R. C. (2021). Influência da maturação a seco e a vácuo na qualidade e segurança microbiológica da carne. Semina: Ciências Agrárias, 42(1), 155–166. https://doi.org/10.5433/1679-0359.2021v42n1p155

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>