Susceptibility and virulence profile of Escherichia coli pathotypes isolated from diarrheic and non-diarrheic calves

Juliana da Silva Menezes Azola, Marita Vedovelli Cardozo, Bianca de Souza Moreira, Gabriel Michelutti do Nascimento, Marcelo Fabiano Gomes Boriollo, Fernando Antônio de Ávila

Abstract


Neonatal diarrhea is amongst the most frequent diseases affecting calves, leading to damages in milk production. Although Escherichia coli is a commensal microorganism in the gastrointestinal tract, some pathotypes are known to cause high prevalence of diarrhea and food poisoning. The rapidly increasing resistance of bacteria to antimicrobials leads to the research in new, alternative treatment options. The present study aimed at the detection of E. coli pathotypes in newborn diarrheic and non-diarrheic calves, as well as susceptibility tests for antimicrobials and vegetal extracts. Samples were collected from animals located in dairy farms in the state of Minas Gerais, Brazil. The samples were sent for microbiological isolation, genetic identification using PCR and antimicrobial tests. A total of 35 strains from diarrheic animals tested positive for at least one of the virulence genes analyzed: stx1, stx2, eae, bfp and sta. As for the non-diarrheic animals, 9 isolated strains possessed one of or both stx1 and stx2 genes, classifying these non-diarrheic cattle as reservoirs for the STEC pathotype and possible biological vectors of this pathogen. Regarding the susceptibility tests, most isolates displayed resistance to multiple antimicrobial classes. Among the vegetal extracts tested, all isolates tested sensitive to the active ingredient of Salvia officinalis L. (sage). Showcasing an alternative tool to aid in the treatment of pathogenic bacteria.

Keywords


Colibacillosis; EPEC; ETEC; Salvia officinalis L. STEC.

Full Text:

PDF

References


Agência Nacional de Vigilância Sanitária (2010). Farmacopeia brasileira (5a ed., rev. 2). Brasília, DF: ANVISA.

Akiyama, Y., Saito, E., Futai, H., Ogita, K., Sakae, H., Fukunaga, M., & Mimura, M. (2015). Comprehensive study of pathogenic genes distributed in Escherichia coli isolated from cattle. Food Hygiene and Safety Science, 56(3), 118-122. doi: 10.3358/shokueishi.56.118

Assumpção, G. L. H., Cardozo, M. V., Beraldo, L. G., Maluta, R. P., Silva, J. T., Avila, F. A., & Rigobelo, E. C. (2015). Antimicrobials resistance patterns and the presence of stx1, stx2 and eae in Escherichia coli. Revista Brasileira de Saúde e Produção Animal, 16(2), 308-316. doi: 10.1590/S1519-9940201500020 0006

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.

Bonardi, S., Alpigiani, I., Tozzoli, R., Vismarra, A., Zecca, V., Greppi, C., & Brindani, F. (2015). Shiga toxin-producing Escherichia coli O157, O26 and O111 in cattle faeces and hides in Italy. Veterinary Record Open, 2(1), 1-9. doi: 10.1136/vetreco-2014-000061

Bozin, B., Mimica-Dukic, N., Samojlik, I., & Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. Journal of Agricultural and Food Chemistry, 55(19), 7879-7885. doi: 10.1021/jf0715323

China, B., Pirson, V., & Mainil, J. (1996). Typing of bovine attaching and effacing Escherichia coli by multiplex in vitro amplification of virulence-associated genes. Applied and Environmental Microbiology, 62(9), 3462-3465.

Climati, E., Mastrogiovanni, F., Valeri, M., Salvini, L., Bonechi, C., Mamadalieva, N. Z., & Tiezzi, A. (2013). Methyl carnosate, an antibacterial diterpene isolated from Salvia officinalis leaves. Natural Product Communications, 8(4), 429-430.

Clinical and Laboratory Standard Institute (2013). Performance standards for antimicrobial disk susceptibility tests, CLSI Document M100-S23, twenty-third informational supplement (33th ed., rev. 1). Wayne, PA: CLSI.

Di Stasi, L. C. (1996). Plantas medicinais, arte e ciência: um guia prático para estudo interdisciplinar. São Paulo, SP: UNESP.

Fournomiti, M., Kimbaris, A., Mantzourani, I., Plessas, S., Theodoridou I., Papaemmanouil, V., & Alexopoulos, A. (2015). Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microbial Ecology in Health and Disease, 26(1), 1-7. doi: 10.3402/mehd.v26.23289

Golestani, M. R., Rad, M., Bassami, M., & Afkhami-Goli, A. (2015). Analysis and evaluation of antibacterial effects of new herbal formulas, AP-001 and AP-002, against Escherichia coli O157:H7. Life Sciences, 135(1), 22-26. doi: 10.1016/j.lfs.2015.05.007

Gregory, L., Rossi, R. S., Mendes, J. P. G., Neuwirt, N., Marques, E. C., Melville, P. A., & Monteiro, B. M. (2014). Ocorrência dos principais agentes bacterianos e parasitários em fezes diarreicas de bezerros búfalos nos estados de São Paulo e Paraná. Arquivos do Instituto Biológico, 81(2), 180-185. doi: 10. 1590/1808-1657001122012

Güler, L., Gündüz, K., & Ok, Ü. (2008). Virulence factors and antimicrobial susceptibility of Escherichia coli isolated from calves in Turkey. Zoonoses and Public Health, 55(5), 249-257. doi: 10.1111/j.1863-2378.2008.01121.x

Horiuchi, K., Shiota, S., Hatano, T., Yoshida, T., Kuroda, T., & Tsuchiya, T. (2007). Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biological and Pharmaceutical Bulletin, 30(6), 1147-1149. doi: 10.1248/bpb.30.1147

Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn, W. C. Jr. (2001). Diagnóstico microbiológico, (5th ed.). Rio de Janeiro, RJ: Medsi.

Krumperman, P. H. (1983). Multiple antibiotic resistence indexing of Escherichia coli to identify high risk sources of fecal contamination of foods. Applied Environment Microbiology, 46(1), 165-170.

Lixandru, B. E., Drãcea, N. O., Dragomirescu, C. C., Drãgulescu, E. C., Coldea, I. L., Anton, L., & Coditã, I. (2010). Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay. Roumanian Archives of Microbiology and Immunology, 69(4), 224-230.

Mac Faddin, J. F. (1976). Biochemical tests for identification of medical bacteria. Baltimore, MD: Williams & Wilkins.

Moura, C., Ludovico, M., Valadares, G. F., Gatti, M. S. V., & Leite, D. S. (2012). Detection of virulence genes in Escherichia coli strains isolated from diarrheic and healthy feces of dairy calves in Brazil. Arquivos do Instituto Biológico, 79(2), 273-276. doi: 10.1590/S1808-16572012000200016

Pereira, R. S., Sumita, T. C., Furlan, M. R., Jorge, A. O. C., & Ueno, M. (2004). Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection. Revista de Saúde Pública, 38(2), 326-328. doi: 10.1590/S0034-89102004000200025

Salvadori, M. R., Valadares, G. F., Leite, D. S., Blanco, J., & Yano, T. (2003). Virulence factors of Escherichia coli isolated from calves with diarrhea in Brazil. Brazilian Journal of Microbiology, 34(3), 230-235. doi: 10.1590/S1517-83822003000300009

Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3a ed.). London: CSHL Press.

Shahrani, M., Dehkordi, FS., & Momtaz, H. (2014). Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biological Research, 47(1), 28. doi: 10.1186/0717-6287-47-28




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n2p695

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional