Production and profitability of crop rotation systems in southern Brazil

Lutécia Beatriz dos Santos Canalli, Gustavo Vaz da Costa, Bruno Volsi, André Luís Mendes Leocádio, Carmen Silvia Vieira Janeiro Neves, Tiago Santos Telles


Crop rotation is one of the pillars of conservation agriculture. This practice has offered a series of advantages in terms of improving soil physical, chemical, and biological conditions. These advantages result in yield increases for all economic crops involved in the rotation systems and may also reduce production costs. In this context, the aim of this study was to compare the profitability of crop rotation systems with different levels of crop diversification. The experimental design was randomized blocks, with five treatments and four replications. The treatments included one less diversified crop rotation system (control) with soybean and wheat and four more diversified crop rotation systems (involving three or more species), including soybean, wheat, black oats, maize, canola, barley, blue lupine, white oats, beans, radish, triticale, rye, hairy vetch, and sorghum, under no-tillage conducted during a three-year cycle. Analyses were conducted considering productivity, operating cost, and economic profit. The highest accumulated gross yields were obtained in the more diversified crop rotation systems. The results show that the more diversified crop rotation systems were more profitable. When the opportunity cost was included, the most diversified crop rotations presented greater economic feasibility. The less diversified crop rotation system presented a negative economic profit. The crop rotation systems including beans presented the highest economic profit.


Conservation agriculture; No-tillage; Cover crops; Soil conservation; Sustainable agriculture.

Full Text:



Abreu, D. C., Hoshide, A. K., Mallory, E. B., Roche, E. H., Oliveira, A. S., Kersbergen, R. J., Fonseca, M. A. (2016). Economic and environmental implications of wheat-crop sequences on organic dairy-farm simulations. Crop and Pasture Science, 67(11), 1127-1138. doi: 10.1071/CP15250

Al-Kaisi, M., Archontoulis, S., & Kwaw-Mensah, D. (2016). Soybean spatiotemporal yield and economic variability as affected by tillage and crop rotation. Agronomy Journal, 108(3), 1267-1280. doi: 10.2134/ agronj2015.0363

Al-Kaisi, M., Archontoulis, S., Kwaw-Mensah, D., & Miguez, F. (2015). Tillage and crop rotation effects on corn agronomic response and economic return at seven Iowa locations. Agronomy Journal, 107(4), 1411-1424. doi: 10.2134/agronj14.0470

Blanco-Canqui, H., Mikha, M. M., Presley, D. R., & Claassen, M. M. (2011). Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Science Society of America Journal, 75(4), 1471-1482. doi: 10.2136/sssaj2010.0430

Bolliger, A., Magid, J., Amado, J. C. T., Skóra, F., Neto, Ribeiro, M. de F. dos S., Calegari, A., ... Neergaard, A. (2006). Taking stock of the Brazilian “Zero till revolution”: A review of landmark research and farmers’ practice. Advances in Agronomy, 91, 47-110. doi: 10.1016/S0065-2113(06)91002-5

Bowman, M. S., & Zilberman, D. (2013). Economic factors affecting diversified farming systems. Ecology And Society, 18(1), 33-46. doi: 10.5751/ES-05574-180133

Ferreira, B. G. C., Freitas, M. M. L., & Moreira, G. C. (2015). Custo operacional efetivo de produção de soja em sistema plantio direto. iPecege, 1(1), 39-50. doi: 10.22167/r.ipecege.2015.1.39

Gentry, L. F., Ruffo, M. L., & Below, F. E. (2012). Identifying factors controlling the continuous corn yield penalty. Agronomy Journal, 105(2), 295-303. doi: 10.2134/agronj2012.0246

Ghorbani, R., Wilcockson S., Koocheki A., & Leifert C. (2009). Soil management for sustainable crop disease control: A review. In: E. Lichtfouse (Ed.), Organic farming, pest control and remediation of soil pollutants. Sustainable agriculture reviews (177-201). Dordrecht: Springer. doi: 10.1007/978-1-4020-9654-9_10

Golpen, J. J., Coulter, J. A., Sheaffer, C. C., Becker, R. L., Breitenbach, F. R., Behnken, L. M., & Gunsolus, J. L. (2018). Economic performance of crop rotations in the presence of herbicide-resistant giant ragweed. Agronomy Journal, 110(1), 260-268. doi: 10.2134/agronj2016.09.0536

Grassini, P., Torrion, J. A., Gassman, K. G., Yang, H. S., & Specht, J. E. (2014). Drivers of spatial and temporal variation in soybean yield and irrigation requirements in western US Corn Belt. Field Crops Research, 163, 32-46. doi: 10.1016/j.fcr.2014.04.005

Hauk, S., Gandorfer, M., Wittkopf, S., Müller, U. K., & Knoke, T. (2017). Ecological diversification is risk reducing and economically profitable–The case of biomass production with short rotation woody crops in south German land-use portfolios. Biomass and Bioenergy, 98, 142-152. doi: 10.1016/j.biombioe. 2017.01.018

Hunt, N. D., Hill, J. D., & Liebman, M. (2019). Cropping system diversity effects on nutrient discharge, soil erosion, and agronomic performance. Environmental Science & Technology, 53(3), 1344-1352. doi: 10.1021/acs.est.8b02193

Instituto Brasileiro de Geografia e Estatística (2017). Pesquisa agrícola municipal - PAM. IBGE Automatic recovery system - SIDRA. Recuperado de

Jat, H. S., Datta, A., Choudhary, M., Yadav, A. K., Choudhary, V., Sharma, P. C.,... McDonald, A. (2019). Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil & Tillage Research, 190, 128-138. doi: 10.1016/j.still.2019.03.005

Jouan, J., Ridier, A., & Carof, M. (2019). Economic drivers of legume production: approached via opportunity costs and transaction costs. Sustainability, 11(3), 705. doi: 10.3390/su11030705

Kay, R. D., Edwards, W. M., & Duffy, P. A. (2014). Farm management (7nd ed.). New York: McGraw-Hill Education.

Leal, A. J. F., Lazarini, E., Tarsitano, M. A. A., Sá, M. E., & Gomes, F. G. Jr. (2005). Viabilidade econômica da rotação de culturas e adubos verdes antecedendo o cultivo do milho em sistema de plantio direto em solo de cerrado. Revista Brasileira de Milho e Sorgo, 4(3), 298-307. doi: 10.18512/1980-6477/rbms. v4n03p%25p

Li, J., Huang, L., Zhang, J., Coulter, J. A., Li, L., & Gan, Y. (2019). Diversifying crop rotation improves system robustness. Agronomy for Sustainable Development, 39, 38. doi: 10.1007/s13593-019-0584-0

Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience, 61(3), 183-193. doi: 10.1525/bio.2011.61.3.4

Marcelo, A. V., Cora, J. E., & Fernandes, C. (2012). Sequências de culturas em sistema de semeadura direta: I - produção de matéria seca e acúmulo de nutrientes. Revista Brasileira de Ciência do Solo, 36(5), 1553-1567. doi: 10.1590/S0100-06832012000500020

Mello, D. A., & Esperancini, M. S. T. (2015). Avaliação econômica do cultivo da soja em rotação e sucessão de culturas: resultados a partir de estudo de caso no município de Ourinhos/SP, na safra 2012/13. Energia na Agricultura, 30(3), 280-288. doi: 10.17224/EnergAgric.2015v30n3p280-288

Menegatti, A. L. A., & Barros, A. L. M. (2007). Análise comparativa dos custos de produção entre soja transgênica e convencional: um estudo de caso para o Estado do Mato Grosso do Sul. Revista de Economia e Sociologia Rural, 45(1), 163-183. doi: 10.1590/S0103-20032007000100008

Morrison, M. J., Cober, E. R., Gregorich, E. G., Voldeng, H. D., Ma, B., & Topp, G. C. (2017). Tillage and crop rotation effects on the yield of corn, soybean, and wheat in eastern Canada. Canadian Journal of Plant Science, 98(1), 183-191. doi: 10.1139/cjps-2016-0407

Nunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J., & Ryan, M. (2018). No-till and cropping system diversification improve soil health and crop yield. Geoderma, 328, 30-43. doi: 10.1016/j. geoderma.2018.04.031

San Martín, C., Long, D. S., Gourlie, J. A., & Barroso, J. (2019). Spring crops in three year rotations reduce weed pressure in winter wheat. Field Crops Research, 233, 12-20. doi: 10.1016/j.fcr.2018.12.017

Sánchez-Navarro, V., Zornoza, R., Faz, Á., & Fernández, J. A. (2019). Does the use of cowpea in rotation with a vegetable crop improve soil quality and crop yield and quality? A field study in SE Spain. European Journal of Agronomy, 107, 10-17. doi: 10.1016/j.eja.2019.03.007

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R.,... Cunha, T. J. F. (2018). Brazilian system of soil classification (5th ed.). Brasília, DF: EMBRAPA.

Santos, H. P., Ambrosi, I., Ignaczak, J. C., & Sandini, I. (1996). Análise econômica de sistemas de rotação de culturas para ceva, sob sistema plantio direto. Pesquisa Agropecuária Brasileira, 31(3), 165-171.

Santos, H. P., Fontaneli, R. S., Pires, J., Lamperto, E. A., Vargas, A. M., & Verdi, A. C. (2014). Grain yield and agronomic traits in soybean according to crop rotation systems. Bragantia, 73(3), 319-326. doi: 10.1590/1678-4499.0136

Scopel, E., Triomphe, B., Affholder, F., Silva, F. A. M. da, Corbeels, M., Xavier, J. H. V., ... Tourdonnet, S. (2013). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development, 33, 113-130. doi: 10.1007/s13593-012-0106-9

United States Department of Agriculture (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys (2a ed.). Washington, DC: Soil Survey Staff, USDA, NRCS.

Ustaoglu, E., Castillo, C. P., Jacobs-Crisioni, C., & Lavalle, C. (2016). Economic evaluation of agricultural land to assess land use changes. Land Use Policy, 56, 125-146. doi: 10.1016/j.landusepol.2016.04.020

Volsi, B., Bordin, I., Higashi, G. E., & Telles, T. S. (2020). Economic profitability of crop rotation systems in the Caiuá sandstone area. Ciência Rural, 50(2), e20190264. doi: 10.1590/0103-8478cr20190264

Weisberger, D., Nichols, V., & Liebman, M. (2019). Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE, 14(7), e0219847. doi: 10.1371/journal.pone.0219847

Zegada-Lizarazu, W., & Monti, A. (2011). Energy crops in rotation. A review. Biomass and Bioenergy, 35(1), 12-25. doi: 10.1016/j.biombioe.2010.08.001


Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional