Ruminal parameters and fatty acid composition of omasal digesta and milk in cows fed sugarcane-based diets supplemented with sunflower oil

Fernando César Ferraz Lopes, Shirley Motta de Souza, Sebastião de Campos Valadares Filho, Marco Antônio Sundfeld da Gama, Luciana Navajas Rennó

Abstract


This study evaluates the intake and digestion of nutrients, parameters of rumen fermentation and degradation, omasal digesta and milk fatty acid composition, productive performance, and the concentration of serum metabolites in cows fed 600 g kg-1 sugarcane-based diets containing 0 (control), 15, 30, and 45 g kg-1 sunflower oil (SO) on a dry matter (DM) basis. Four rumen-cannulated Holstein x Gyr cows yielding 15±5 kg day-1 with 110±10 days in milk were allocated in a 4 x 4 Latin square design. Data were analyzed using mixed models, and significant differences were declared at P < 0.05. There was no effect of SO on the intake and apparent digestibility of DM, crude protein, neutral detergent fiber (NDF) and nonfibrous carbohydrates, but there was a linear increase in the intake and digestibility of ether extract. Dietary SO levels did not alter the ruminal degradability parameters for DM and NDF, rumen pH and contents of ammonia N, acetate, propionate and volatile fatty acids. Milk fat content and yield were linearly decreased, whereas a linear increase in milk protein content was observed in response to increasing levels of SO, but with no effect on milk yield. Linear reductions in palmitic and ?-linolenic acid contents, a linear increase in trans-10 C18:1 and elaidic acids, and a quadratic effect on vaccenic and rumenic acids were observed in omasal digesta of cows fed increasing levels of SO. Overall, up to 45 g kg-1 SO can be included on DM of chopped sugarcane-based diets without reducing consumption, apparent digestibility and rumen degradability of DM and fiber. Supplementing chopped sugarcane-based diets with 30 to 45 g kg-1 SO (DM basis) promotes milk fat depression due to the inhibition of mammary lipogenesis by specific rumen-derived fatty acid intermediates of the biohydrogenation of unsaturated C18 fatty acids. The inclusion of 15 to 45 g kg-1 SO in chopped sugarcane-based diets improves the nutritional quality of milk fat, with increases in the levels of oleic, vaccenic and rumenic acids, beneficial to human health, and a reduction in the levels of the hypercholesterolemic lauric, myristic and palmitic acids.

Keywords


Conjugated linoleic acid; Rumenic acid; Saccharum officinarum; Vaccenic acid.

Full Text:

PDF

References


Bernard, L., Bonnet, M., Delavaud, C., Delosière, M., Ferlay, A., Fougère, H., & Graulet, B. (2018). Milk fat globule in ruminant: major and minor compounds, nutritional regulation and differences among species. European Journal of Lipid Science and Technology, 120(5), 1700039. doi: 10.1002/ejlt.201700039

Campos, M. M., Lopes, F. C. F., Pereira, L. G. R., Machado, F. S., & Tomich, T. R. (2017). Cana-de-açúcar na alimentação de rebanhos leiteiros. In F. C. Silva, B. J. R. Alves, & P. L. Freitas (Org.), Sistema de produção mecanizada da cana-de-açúcar integrada à produção de energia e alimentos (pp. 900-938). Brasília: EMBRAPA.

Conte, G., Dimauro, C., Serra, A., Macciotta, N. P. P., & Mele, M. (2018). A canonical discriminant analysis to study the association between milk fatty acids of ruminal origin and milk fat depression in dairy cows. Journal of Dairy Science, 101(7), 6497-6510. doi: 10.3168/jds.2017-13941

Detmann, E., Valadares, S. C., Fº., Berchielli, T. T., Cabral, L. S., Ladeira, M. M., Souza, M. A.,... Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco: SUPREMA.

Fuentes, M. C., Calsamiglia, S., Cardozo, P. W., & Vlaeminck, B. (2009). Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Journal of Dairy Science, 92(9), 4456-4466. doi: 10.3168/jds.2008-1722

Hammad, S., Pu, S., & Jones, P. J. (2016). Current evidence supporting the link between dietary fatty acids and cardiovascular disease. Lipids, 51(5), 507-517. doi: 10.1007/s11745-015-4113-x

Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science, 76(1), 3851-3863. doi: 10.3168/jds.S0022-0302(93)77727-9

Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A., & Loor, J. J. (2009). Peroxisome proliferator-activated receptor-? activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92(9), 4276-4289. doi: 10.3168/jds.2008-1932

Kliem, K. E., & Shingfield, K. J. (2016). Manipulation of milk fatty acid composition in lactating cows: opportunities and challenges. European Journal of Lipid Science and Technology, 118(11), 1661-1683. doi: 10.1002/ejlt.201400543

Leão, M. I. (2002). Metodologias de coletas de digestas omasal e abomasal em novilhos submetidos a três níveis de ingestão: consumo, digestibilidade e produção microbiana. Tese de doutorado, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

Lopes, F. C. F., Ribeiro, C. G. S., Rodriguez, N. M., Gama, M. A. S., Morenz, M. J. F., Antoniassi, R., & Bizzo, H. R. (2019). Butter fatty acid composition as a function of soybean oil supplementation and time of milking, and performance of Holstein x Gyr cows fed with chopped elephant grass-based diets. Semina: Ciências Agrárias, 40(5), 2027-2044. doi: 10.5433/1679-0359.2019v40n5p2027

Mahdavi, A., Mahdavi, A., Darabighane, B., Mead, A., & Lee, M. R. F. (2019). Effects of soybean oil supplement to diets of lactating dairy cows, on productive performance, and milk fat acids profile: a meta-analysis. Italian Journal of Animal Science, 18(1), 809-819. doi: 10.1080/1828051X.2019. 1585211

Meneses, M. A., Silva, F. F., Silva, R. R., Schio, A. R., Silva, G. M., Rodrigues, E. S. O.,... Pimentel, L. R. (2015). Composição em ácidos graxos do leite de vacas alimentadas com glicerina de baixa pureza. Semina: Ciências Agrárias, 36(2), 971-984. doi: 10.5433/1679-0359.2015v36n2p971

National Research Council (2001). Nutrients requirements of dairy cattle (7nd ed.). Washington: National Academy Press.

Nocek, J. E. (1988). In situ and other methods to estimate ruminal protein and energy digestibility. A review. Journal of Dairy Science, 71(8), 2051-2069. doi: 10.3168/jds.S0022-0302(88)79781-7

Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92(2), 499-503. doi: 10.1017/S0021859600063048

Prado, L. A., Schmidely, P., Nozière, P., & Ferlay, A. (2019). Milk saturated fatty acids, odd- and branched-chain fatty acids, and isomers of C18:1, C18:2, and C18:3n-3 according to their duodenal flows in dairy cows: A meta-analysis approach. Journal of Dairy Science, 102(4), 3053-3070. doi: 10.3168/jds.2018-15194

Ribeiro, C. G. S., Lopes, F. C. F., Gama, M. A. S., Rodriguez, N. M., & Morenz, M. J. F. (2018). Ruminal fermentation and degradation, kinetic flow of the digesta and milk fatty acid composition of cows fed chopped elephant grass supplemented with soybean oil. Semina: Ciências Agrárias, 39(4), 1775-1794. doi: 10.5433/1679-0359.2018v39n4p1775

Ribeiro, R. C. O., Villela, S. D. J., Valadares, S. C., Fº., Santos, S. A., Ribeiro, K. G., Detmann, E.,... Martins, P. G. M. A. (2015). Effects of roughage sources produced in a tropical environment on forage intake, and ruminal and microbial parameters. Journal of Animal Science, 93(5), 2363-2374. doi: 10.2527/jas.2014-8719

Rico, D. E., Holloway, A. W., & Harvatine, K. J. (2015a). Effect of diet fermentability and unsaturated fatty acid concentration on recovery from diet-induced milk fat depression. Journal of Dairy Science, 98(11), 7930-7943. doi: 10.3168/jds.2014-8990

Rico, D. E., Preston, S. H., Risser, J. M., & Harvatine, K. J. (2015b). Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows. British Journal of Nutrition, 114(3), 358-367. doi: 10.1017/S0007114515001865

Rodney, R. M., Celi, P., Scott, W., Breinhild, K., & Lean, I. J. (2015). Effects of dietary fat on fertility of dairy cattle: A meta-analysis and meta-regression. Journal of Dairy Science, 98(8), 5601-5620. doi: 10.3168/jds.2015-9528

Rodrigues, J. P. P., Paula, R. M., Rennó, L. N., Costa, G. P., Hamade, V. C. E., Valadares, S. C., Fº,... Marcondes, M. I. (2019). Effects of soybean oil supplementation on performance, digestion and metabolism of early lactation dairy cows fed sugarcane-based diets. Animal, 13(6), 1198-1207. doi: 10.1017/S1751731118002781

Rodrigues, J. P. P., Paula, R. M., Rennó, L. N., Fontes, M. M. S., Machado, A. F., Valadares, S. C., Fº,... Marcondes, M. I. (2017). Short-term effects of soybean oil supplementation on performance, digestion, and metabolism in dairy cows fed sugarcane-based diets. Journal of Dairy Science, 100(6), 4435-4447. doi: 10.3168/jds.2016-11725

Santos, J. E. P. (2011). Distúrbios metabólicos. In T. T. Berchielli, A. Vaz Pires, & S. G. Oliveira (Eds.), Nutrição de ruminantes (2a ed., pp. 439-520). Jaboticabal: FUNEP.

Santos, S. A., Valadares, S. C., Fº, Detmann, E., Valadares, R. F. D., Ruas, J. R. M., & Amaral, P. M. (2011). Different forage sources for F1 Holstein x Gir dairy cows. Livestock Science, 142(1-3), 48-58. doi: 10.1016/j.livsci.2011.06.017

Shingfield, K. J., Ahvenjärvi, S., Toivonen, V., Ärölä, A., Nurmela, K. V. V., Huhtanen, P., & Griinari, J. M. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77(1), 165-179. doi: 10.1017/S1357729800053765

Shingfield, K. J., Bernard, L., Leroux, C., & Chilliard, Y. (2010). Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal, 4(7), 1140-1166. doi: 10.1017/S17 51731110000510

Souza, S. M., Lopes, F. C. F., Valadares, S. C., Fº, Gama, M. A. S., Rennó, L. N., & Rodrigues, J. P. P. (2019). Milk fatty acid composition of Holstein x Gyr dairy cows fed sugarcane-based diets containing citrus pulp supplemented with sunflower oil. Semina: Ciências Agrárias, 40(4), 1663-1680. doi: 10.5433/1679-0359.2019v40n4p1663

Tomich, T. R., & Sampaio, I. B. M. (2004). A new strategy for the determination of forage degradability with an in situ technique through the use of one fistulated ruminant. The Journal of Agricultural Science, 142(5), 589-593. doi: 10.1017/S0021859604004654

Vahmani, P., Meadus, W. J., Duff, P., Rolland, D. C., & Dugan, M. E. R. (2017). Comparing the lipogenic and cholesterol genic effects of individual trans-18:1 isomers in liver cells. European Journal of Lipid Science and Technology, 119(3), 1600162. doi: 10.1002/ejlt.201600162

Valadares, S. C., Fº., & Pina, D. S. (2011). Fermentação ruminal. In T. T. Berchielli, A. Vaz Pires, & S. G. Oliveira (Eds.), Nutrição de ruminantes (2a ed., pp. 161-191). Jaboticabal: FUNEP.

Weiss, W. P. (1999). Energy prediction equations for ruminant feeds. Proceedings of Cornell Nutrition Conference for Feed Manufactorers, Ithaca, USA, 61

Yang, B., Chen, H., Stanton, C., Ross, R. P., Zhang, H., Chen, Y. Q., & Chen, W. (2015). Review of the roles of conjugated linoleic acid in health and disease. Journal of Functional Foods, 15, 314-325. doi: 10.1016/j.jff.2015.03.050




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n5supl1p2317

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional