Fruit production and quality of mini-watermelon with different number of stems, in troughs cultivation system and substrate reuse

Josiéle Garcia Dutra, Roberta Marins Nogueira Peil, Tatiana da Silva Duarte, Cesar Valmor Rombaldi, Paulo Roberto Grolli, Aline Soares Pereira, Athos Odin Severo Dorneles

Abstract


Substrate-filled pots are growing systems commonly used for vegetable farming. However, few are the studies available relating them to mini-watermelon cultivation. Our study presents a growing system using substrate-filled troughs and leachate recirculation as a low-cost and less environmentally harmful soilless cultivation system for mini-watermelons. For a growing system to be viable and provide high fruit yield and quality, several aspects must be studied, including substrate physical properties and reuse potential in successive crops, besides plant management-related aspects. Therefore, our goal was to evaluate the effects of a trough system and substrate reuse on changes in the properties of raw rice husk and on fruit yield and quality for mini-watermelons at different stem training. To this purpose, two trials were conducted using nutrient solution recirculation systems. In the first, we evaluated the effects of pot and trough systems. In the second, first- and second-use substrates were compared in the trough system. In both trials, one and two-stem training systems were analyzed. The results of the first trial show that the trough system had a greater positive impact on substrate water holding capacity (WHC), which increased from 7.9 to 15.6%, while the pots increased substrate WHC only to 11.2%. However, both systems neither affected fruit yield (8 kg/m² on average) nor fruit quality. The two-stem training promoted higher fruit yields (4.2 kg/plant) and contents of total soluble solids - TSS (11.4 °Brix) but did not affect average fruit weight. Moreover, the one-stem training provided higher fruit number (7.3 fruits/m²) and fruit yield (9.7 kg/m²). In the second trial, the reused substrate showed a higher WHC (12.4%) than the one used for the first time (9.9%). The reused substrate also provided better results in terms of fruit yield and quality (5.9 fruits/m², 5.3 kg/m², and 10.5o Brix). In the second trial, two-stem training also increased average fruit weight, and hence yields per plant. Nevertheless, the stem number did not affect fruit number per plant, fruit yield per square meter, and fruit quality.

Keywords


Citrullus lanatus; Pot cultivation; Fruit yield and quality; Leachate recirculation.

Full Text:

PDF

References


Almeida, D. (2006). Horticultural crops manual. Lisbon: Ed. Presença.

Barni, V., Barni N. A., & Silveira, J. R. P. (2003). Melon plant in polyethylene greenhouse: two stems are the best system of conduction. Ciência Rural, 33(6), 1039-1043. doi: 10.1590/S0103-8478200300060 0007

Bohm, W. (1979). Methods of studying root system. Berlin: Spring Verlang.

Boodt, M., & Verdonck, O. (1972). The physical properties of the substrates in horticulture. Acta Horticulturae, 26(1), 7-44. doi: 10.17660/ActaHortic.1972.26.5

Cadahia, C. (1998). Fertirrigacion: cultivos hortícolas y ornamentales. Madrid: Mundi-Prensa.

Campagnol, R. (2009). Sistemas de condução de mini melancia cultivada em ambiente protegido. Dissertação de mestrado. Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brasil.

Campagnol, R., Matsuzaki, R. T., & Mello, S. C. (2016). Vertical conduction system and plant density of mini watermelon in greenhouse. Horticultura Brasileira, 34(1), 137-143. doi: 10.1590/S0102-05362 0160000100021

Campagnol, R., Mello, S. C., & Barbosa, J. C. (2012). Vertical growth of mini watermelon according to the training height and plant density. Horticultura Brasileira, 30(4), 726-732. doi: 10.1590/S0102-0536 2012000400027

Casas-Castro, A. (1999). Formulación de la solución nutritiva. Parámetros de ajuste. In M. F. Férnandez, & I. M. G. Cuadrado (Eds.), Cultivos sin Suello II (2nd ed., pp. 257-266). Almería: DGIFA-FIAPA-Caja Rural de Almería.

Chitarra, M. I. F., & Chitarra, A. B. (2005). Postharvest of fruits and vegetables: physiology and handling. Lavras: UFLA.

Dias, R. C. S., & Lima, M. A. C. (2010). Harvest and post-harvest. Watermelon production systems. Petrolina: EMBRAPA Informação Tecnológica/EMBRAPA Semiárido. Retrieved from http://sistemas deproducao.cnptia.embrapa.br/FontesHTML/Melancia/SistemaProducaoMelancia/

Fermino, M. H. (2014). Substrates: composition, characterization and methods of analysis. Guaíba: Agrolivros.

Gomes, R. F., Santos, L. S., Braz, L. T., Andrade, F. L. N., & Monteiro, S. M. F. (2019). Number of stems and plant density in mini watermelon grown in a protected environment. Pesquisa Agropecuária Tropical, 49(1), 1-8. doi: 10.1590/1983-40632019v4954196

Goto, R., Hora, R. C. da, & Demant, L. A. R. (2005). Protected cultivation in Brazil: history, perspectives and problems faced with its use. In F. Bello Fº., H. P. dos Santos, & P. R. D. de Oliveira (Eds,), Research seminar on tempered fruit (pp. 27-29). Bento Gonçalves, RS: Programs and Lectures. EMBRAPA Grape and Wine.

Heine, A. J. M., Moraes, M. O. B., Porto, J. S., Souza, J. R. de, Rebouças, T. N. H., & Santos, B. S. R. (2015). Stem number and spacing in tomato production and quality. Scientia Plena, 11(9), 1-10. doi: 10. 14808/sci.plena.2015.090202

Hoffmann, G. (1970). Verbindliche methoden zur untersuchung von TKS und gartnerischen erden. Mitteilungen der VSLUFA, 6, 129-153.

Hurst, W. C. (2010). Commercial watermelon prodution/ harvest and handling. Retrieved from https:// secure.caes.uga.edu/extension/publications/files/pdf/B%20996_4.PDF

Kämpf, A. N. (2005). Commercial ornamental plant production (2nd ed.). Guaíba: Agrolivros.

Marques, G. N. (2013). Crescimento e consumo de água de genótipos de minimelancia em sistema hidropônico sob ambiente protegido. Dissertação de Mestrado, Universidade Federal de Pelotas, Pelotas, RS, Brasil.

Montezano, E. M. (2007). Sistemas de cultivo sem solo para a cultura do meloeiro. Tese de Doutorado, Universidade Federal de Pelotas, Pelotas, RS, Brasil.

Neutzling, C. (2018). Reutilização de substrato de casca de arroz in natura em sistema de calhas com recirculação do lixiviado para cultivo de híbridos de pepineiro conserva. Dissertação de mestrado, Universidade Federal de Pelotas, Pelotas, RS, Brasil.

Peil, R. M. N., & Signorini, C. (2018). Aspectos técnicos e ambientais da produção de hortaliças de fruto em sistemas “abertos” e “fechados” de cultivo em substrato. Anais De Resumos Expandidos Do XI Encontro Nacional Sobre Substrato Para Plantas - XI Ensub, Canela, RS, Brasil, 11.

Perin, L., Peil, R. M. N., Hohn, D., Rosa, D. S. B., Wieth, A. R., & Grolli, P. R. (2018). Trough and pot crop systems with leaching recirculation and defoliation levels for mini tomatoes. Acta scientiarum Agronomy, 40(1), 34992. doi: 10.4025/actasciagron.v40i1.34992

Reis, L. S., Azevedo, C. A. de, Albuquerque, A. W., & Silva, J. F. Jr. (2013). Leaf area index and tomato yield under protected environment conditions. Engenharia Agrícola e Ambiental, 17(4), 386-391. doi: 10.1590/S1415-43662013000400005

Requena, G. (1999). Cultivo hidropônico de la sandía. In M. F. Fernández, & I. M. C. Gómez (Eds.), Cultivos sin suelo II. Dirección general de investigación y formación para investigación agraria en la provincia de almería/ caja rural de Almería. (vol. 5, pp. 573-579). Almeria: Curso Superior de Especialización.

Resende, G. M., & Costa, N. D. (2003). Yield characteristics of watermelon in different planting spaces. Horticultura Brasileira, 21(4), 695-698. doi: 10.1590/S0102-05362003000400025

Rodrigues, S. (2012). Produção e partição de biomassa, produtividade e qualidade de mini melancia em hidroponia. Dissertação de Mestrado, Universidade Federal de Pelotas, Pelotas, RS, Brasil.

Rosa, D. S. B., Peil, R. M. N., Perin, L., Hohn, D., Weith, A. R., & Grolli, P. R. (2016, setembro). Reutilização de substrato de casca de arroz e número de hastes para o tomateiro grape em sistema com recirculação da solução nutritiva. Anais de resumos expandidos do XI Encontro Brasileiro de Hidroponia e III Simpósio Brasileiro de Hidroponia. Florianópolis, SC, Brasil, 73.

Santos, J. D. G., Jr., Sá, M. D., Ferreira, E. A. B., Resck, D. V. S., & Lavres, J. O., Jr. (2007). Minirhizotron system in the study of root dynamics. (Document, 203). Planaltina, DF: EMBRAPA Cerrados.

Taiz, L., & Zeiger, E. (2006). Plant physiology (3nd ed). Porto Alegre: Artmed.




DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n2p471

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional