Alleviation of aluminum and cadmium toxicity by biochar and its potential toxicity to sorghum

Jane Bruna de Almeida, Laura Souza Santos, Sugandha Dogra Pandey, Claudineia Ferreira Nunes, Fernando Colen, Regynaldo Arruda Sampaio, Leidivan Almeida Frazão, Rodinei Facco Pegoraro, Luiz Arnaldo Fernandes

Abstract


Biochar has been used as an alternative in organic wastes management and to alleviate trace elements toxicity. The aim of this research was to use a rapid and simple test to detect the potential toxic effects of biochar and its ability to alleviate aluminum and cadmium toxicity to seeds and seedlings of Sorghum bicolor L. Two experiments were carried out in Petri dishes with two different biochars where sorghum seeds were exposed to aluminum (experiment 1) and cadmium (experiment 2) solutions. The experimental designs were completely randomized, with five doses of aluminum or cadmium in aqueous solution (0, 0.5, 1, 2, and 4 mmol/L of Al or Cd), combined with or without the addition of 0.25 g of biochar from sugarcane bagasse or from sewage sludge. Compared to treatments without biochar, in the treatments with biochar, higher seed germination rate and growth of sorghum seedlings were obtained. Moreover, the biochars were not toxic to sorghum and they decreased the toxicity of aluminum and cadmium, mainly the biochar from sewage sludge that presented higher pH and greater occurrence of functional groups in its particles.

Keywords


Trace elements; Heavy metals; Soil acidity; Pyrolysis Organic wastes.

Full Text:

PDF

References


Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-Ur-Rrehman, M., Qayyum, M. F., Murtaza, G. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 1(26), 1-13. doi: 10.1007/s11356-017-8987-4

Abdelhafez A. A., Li, J., Abbas, M. H. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere,117, 66-71. doi: 10.1016/j.chemosphere.2014.05.086

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D.,… Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. doi: 10.1016/j.chemosphere.2013.10.071

American Society for Testing and Materials. (2013). D1762-84. Standard test method for chemical analysis of wood charcol (Vol. 84, pp.1-2). Retrieved from https://www.astm.org/Standards/D1762.htm

Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474-480. doi: 10.1016/j.envpol.2010.10.016

Camps-Arbestain, M., Amonette, J. E., Singh, B., Wang, T., & Schmidt, H. P. (2015). A biochar classification system and associated test methods. In J. Lehmann, & S. Joseph (Ed.). Biochar for environmental management (Chap. 8, pp. 165-194). London: Routledge. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/First%20proof%2013-01-09.pdf

Chai, Y., Currie, R. J., Davis, J. W., Wilken, M., Martin, J. D., Fishman, V. N., & Ghosh, U. (2012). Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environmental Science & Technology, 46(2), 1035-1043. doi: 10.1021/es2029697

European Biochar Certificate. (2012). Guidelines for a sustainable production of biochar. Arbaz: European Biochar Foundation. doi: 10.13140/RG.2.1.4658.7043

Free, H. F., McGill, C. R., Rowarth, J. S., & Hedley, M. J. (2010). The effect of biochars on maize (Zea mays) germination. New Zealand Journal of Agricultural Research, 53, 1-4. doi: 10.1080/00288231003606039

Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the Asabe, 51(6), 2061-2069, 2008. doi: 10.13031/2013.25409

George, E., Horst, W. J., & Neumann, E. (2012). Adaptation of plants to adverse chemical soil conditions. In P. Marschner (Ed.). Marschner’s mineral nutrition of higher plants (3rd ed., Chap. 17, pp. 409-472). London: Academic Press. doi: 10.1016/b978-0-12-384905-2.00017-0

Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating ph ysical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biology and Fertility of Soils, 35(4), 219-230. doi 10.1007/s00374-002-0466-4

Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S., & Nyamasoka, B. (2015). Biochar production and applications in sub-saharan Africa: opportunities, constraints, risks and uncertainties. Journal of Environmental Management, 150, 250-61. doi: 10.1016/j.jenvman.2014.11.027

International Biochar Initiative. (2012). Standardized product definition and product testing guidelines for biochar that is used in soil. Washington: IBI. Retrieved from https://biochar-international.org/

Kim, J., Ok, Y. S., Choi, G., & Park, B. (2015). Residual perfluorochemicals in the biochar from sewage sludge. Chemosphere, 134, 435-437. doi: 10.1016/j.chemosphere.2015.05.012

Koetlisi, K A, & Muchaonyerwa P. (2017). Biochar types from latrine waste and sewage sludge differ in physico-chemical properties and cadmium adsorption. American Journal of Applied Science, 14(11), 1039-1048. doi: 10.3844/ajassp.2017.1039.1048

Lee, Y., Park J., Ryu, C., Gang. K. S., Yang, W.; Park. Y. K., Jung J., & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 148, 196-201. doi: 10.1016/j.biortech.2013.08.135

Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In J. Lehmann & S. Joseph (Ed.). Biochar for environmental management. (2rd ed., pp. 1-4) London: Routledge. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/First%20proof%2013-01-09.pdf

Li, H., Dong, X., Silva, E. B., Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178, 466-478. doi: 10.1016/j.chemosphere.2017.03.072

Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249-275. doi: 10.1016/j.apgeochem.2006.09.010

Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D.,… Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment, 191, 124-132. doi: 10.1016/j.agee.2014.04.010

Mosa, H., El-Ghamry, A., & Tolba, M. (2018). Functionalized biochar derived from heavy metal rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere, 198, 351-363. doi: 10.1016/j.chemosphere.2018.01.113

Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163, 247-255. doi: 10.1016/j.biortech.2017.07.033

Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D., & Calderón, F. J. (2014). Soil chemical insights provided through vibrational spectroscopy. Advances in Agronomy, 126, 1-148. doi: 10.1016/B978-0-12-800132-5.00001-8

Paz-Ferreiro, J., Nieto, A., Mendez, A., Askeland, M., & Gasco, G. (2018). Biochar from biosolids pyrolysis: a review. International Journal of Environmental Health Research, 15(5), 1-16. doi: 10.3390/ijerph15050956

Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., Guimarães, I. R., & Guimarães, L. R. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326-333. doi: 10.1016/j.ecoenv.2019.01.110

Qi, F., Kuppusamy, S., Naidu, R., Bolan, N., Ok, Y. S., Lamb, D.,… Wang, H. (2017a). Pyrogenic Carbon and Its Role in Contaminant Immobilization in Soils. Critical Reviews in Environmental Science and Technology, 47(10), 795-876. doi:10.1080/10643389.2017.1328918

Qi, F., Yan, Y., Lamb, D., Naidu, R., Bolan, N., Liu, Y., . . . Semple, K. (2017b). Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 246, 48-56. doi: 10.1016/j.biortech.2017.07.033

Qian, L., Chen, B., & Hu, D. (2013). Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science & Technology, 47(6), 2737-2745. doi: 10.1021/es3047872

Rajkovichc, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48(3), 271-284. doi: 10.1007/s00374-011-0624-7

Resolução No 375, de 29 de agosto de 2006. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados, e dá outras providências. Brasília, Brasil. 2006. Retirado de http://www2.mma.gov.br/port/conama/res/res06/res37506.pdf.

Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M, Abbas, T., & Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23(3), 2230-2248. doi: 10.1007/s11356-015-5697-7

Samac, D. A., & Tesfaye, M. (2003). Plant improvement for resistance to aluminum in acid soils-a review. Plant Cell, Tissue and Organ Culture,75(3), 189-207. doi: 10.1023/A:1025843829545

Silva, I. C. B., Basílio, J. J. N., Fernandes, L. A., Colen, F., Sampaio, R. A., & Frazão, L. A. (2017). Biochar from different residues on soil properties and common bean production. Scientia Agricola, 74(5), 378-382. doi: 10.1590/1678-992x-2016-0242

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric identification of organic compounds (8th ed.). New York: John Wiley & Sons, Inc.

Solaiman, Z. M., Murphy, D. V., & Abbott, L. K. (2012). Biochars influence seed germination and early growth of seedlings. Plant and Soil, 353(1-2), 273-287. doi: 10.1007/s11104-011-1031-4

Soudek, P., Petrová, S., Va?ková, R., Song, J., & Van?k, T. (2014). Accumulation of heavy metals using Sorghum sp. Chemosphere, 104, 15-24. doi: 10.1016/j.chemosphere.2013.09.079

Soudek, P., Rodriguez Valesca, I.M., Petrová, Š., Song, J., & Van?k, T. (2016). Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds. Journal of Geochemical Exploration, 182, 157-165. doi: 10.1016/j.gexplo.2016.12.013

Steenari, B. M., Karlsson, L. G., & Lindqvist, O. (1999). Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass and Bioenergy, 16(2), 119-136. doi: 10.1016/S0961-9534(98)00070-1

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, W., & Yang, Z. (2015). Application of biochar for the kemoval of pollutants from aqueous solutions. Chemosphere, 125, 70-85. doi: 10.1016/j.chemosphere.2014.12.058

Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6), 653-659. doi: 10.1016/j.jbiosc.2013.05.035

Thies, J. E., Rillig, M. C. & Graber, E. R. (2015). Biochar Effects on the Abundance, Activity and Diversity of the Soil Biota. In: J. Lehmann, & S. Joseph (Ed.). Biochar for environmental management (Chap. 13, pp. 327-390). London: Routledge. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/ First%20proof%2013-01-09.pdf

Tsai, W. T., Liu, S. C., Chen, H. R., Chang, Y. M., & Tsai, Y. L. (2012). Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2), 198-203, doi: 10.1016/j.chemosphere.2012.05.085

Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1-3), 432-442. doi: 10.1016/j.jhazmat.2011.03.063

United States Environmental Protection Agency. (1996). Method 3050B: acid digestion of sediments, sludges, and soils. Washington: USEPA. (Revision 2). Retrieved from https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils

Waqas, M., Li, G.; Khan, S., Shamshad, I.; Reid, B. J., Qamar Z., & Chao, C. (2015). Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environmental Science and Pollution Research, 22(16), 12114-12123. doi: 10.1007/s11356-015-4432-8

Wesenbeeck, V. V., Prins, W., Ronsse, F., & Antal, M. J., Jr. (2014). Sewage sludge carbonization forbiochar applications. Fate of heavy metals. Energy & Fuels, 28(8), 5318-5326. doi: 10.1021/ef500875c

Wiedemeier, D. B., Abiven, S., Hockaday, W. C, Keiluweit, M., Kleber, M., Masiello, C.A.,… Schmidt, M. W. I. (2015). Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 78, 135-143. doi: 10.1016/j.orggeochem.2014.10.002

Zhang, P., Sun, H., Yu, L., & Sun, T. (2013). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. Journal of Hazardous Materials, 244-245, 217-224. doi: 10.1016/j.jhazmat.2012.11.046




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n1p95

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional