Analysis of different tracking intervals for Parabolic Trough Collectors for water disinfestation in agricultural applications

Paulo Alexandre Costa Rocha, Stéphano Praxedes Mendonça, Thiago Taketaro Guilherme Watanabe, Maria Eugênia Vieira da Silva, Ricardo José Pontes Lima

Abstract


The use of renewable energy is growing every year as an alternative to fossil fuel technology. Solar energy presents itself as a good alternative due to its great availability and energy potential. Solar thermal energy uses heat to warm fluids, and can also generate electricity, as well as being used in industrial processes and water desalination. The research and use of Parabolic Trough Collectors (PTCs) has been growing in recent years due to their ability to heat fluids at high temperatures in a relatively small area. In this work, two small PTCs were manufactured and tests were performed to improve the arrangements in order to increase the absorbed energy to reach temperature values for water disinfestation, aiming at the control of phytopathogens to control soil pathogens in small and medium farms. To control the automatic tracker, a low-cost system with Arduino, Light Dependent Resistors (LDRs) and step motors was used. The tracking times intervals analyzed were 1, 5 and 15 minutes. For the 1-minute tracking interval, the PTCs presented a thermal efficiency of 25.87%, with temperatures between 45 and 70 °C and an average of 63.73 °C. For the 5-minute tracking interval, the thermal efficiency was 18.48%, reaching temperatures between 41 and 68 °C and an average of 57.9 °C. For the 15-minute tracking interval, the PTCs presented a thermal efficiency of 14.80%, with temperatures between 39 and 62 °C and an average of 51.88 °C. The results showed that the tracking intervals of 1 and 5 minutes present more values between the lethal temperature range of 45 and 60 °C for phytopathogens. For agricultural application, the usage of a tracking interval of 5 minutes could be a good option for reducing the waste of system energy compared to the interval of 1 minute.

Keywords


Parabolic Trough Collectors; Solar energy; Solar Tracking; Water disinfestation.

Full Text:

PDF

References


Abdallah, S. (2004). The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics. Energy Conversion and Management, 45,(11-12), 1671-1679. doi: 10.1016/j.enconman.2003.10.006

Afrin, F., Titirsha, T., Sanjidah, S., Siddique, R. M. & Rabbani, A. (2013, december). Installing dual axis solar tracker on rooftop to meet the soaring demand of energy for developing countries. Proceedings of the Annual IEEE India Conference (INDICON), Mumbai, Maharashtra India, 2013. Retrieved from https://ieeexplore.ieee.org/document/6726033. doi: 10.1109/INDCON.2013.6726033

Ali, A. S., Zanzinger, Z., Debose, D., & Stephens, B. (2016). Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment, 100, 114-126. doi: 10.1016/j.buildenv.2016.02.010

Barbosa, E. S. (2009). Desenvolvimento de um sistema de controle de baixo custo para rastreamento de concentradores cilíndrico-parabólicos. Dissertação (Mestrado em Engenharia Mecânica) - Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Fortaleza.

Baltas, P., Tortoreli, M., & Russel, P. E. (1986). Evaluation of power output for fixed and step tracking photovoltaic arrays. Solar Energy, 37(2), 147-163. doi: 10.1016/0038-092X(86)90072-1

Bahlol, H. Y., Sinha, R., Hoheisel, G., Ehsani, R., & Khot, L. R. (2018). Efficacy evaluation of horticultural oil based thermotherapy for pear psylla management. Crop Protection, 113, 97-103. doi: 10.1016/j.cropro.2018.07.015

Behar, O., Khellaf, A., & Mohammedi, K. (2015). A novel parabolic trough solar collector model - Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Conversion and Management, 106, 268-281. doi: 10.1016/j.enconman.2015.09.045

Bellos, E., Tzivanidis, C., & Antonopoulos, K. A. (2017). A detailed working fluid investigation for solar parabolic trough collectors. Applied Thermal Engineering, 114, 374-386. doi: 10.1016/j.applthermaleng.2016.11.201

Bentaher, H., Kaich, H., Ayadi, N., Hmouda, M. B., Maalej, A., & Lemmer, U. (2013). A simple tracking system to monitor solar PV panels. Energy Conversion and Management, 78, 872-875. doi: 10.1016/j.enconman.2013.09.042

Braga, C. A. S., Armond, G., Tanaka, M. A. S., Ito, M. F., Mesquita, C. M., Maziero, J. V. G., . . . Peche, A, Fº. (2001). Sistema automatizado de aquecimento solar para controle de fitopatógenos da água de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 5(2), 327-331. doi: 10.1590/S1415-43662001000200025

Carvalho, N. M., & Nakagawa, J. (2012). Sementes: ciência, tecnologia e produção (5a ed.). Jaboticabal: Funep.

Chang, T. P. (2009). Performance study on the east-west oriented single-axis tracked panel. Energy, 3 (10), 1530-1538. doi: 10.1016/j.energy.2009.06.044

Cochrane, V. W. (1958). Physiology of fungi. New York: John Wiley & Sons Inc.

Doria, U, Fº. (1999). Introdução à bioestatística: para simples mortais. São Paulo: Negócio Editora.

Erdogan, A., Colpan, C. O., & Cakici, D. M. (2017). Thermal design and analysis of a shell and tube heat exchanger integrating a geothermal based organic Rankine cycle and parabolic trough solar collectors. Renewable Energy, 109, 372-391. doi: 10.1016/j.renene.2017.03.037

Ghatrehsamani, S., Abdulridha, J., Balafoutis, A., Zhang, X., Ehsani, R., & Ampatzidis, Y. (2019). Development and evaluation of a mobile thermotherapy technology for in-field treatment of Huanglongbing (HLB) affected trees. Biosystems Engineering, 182, 1-15. doi: 10.1016/j.biosystemseng.2019.03.011

Ghini, R. (2004). Coletor solar para desinfestação de substratos para produção de mudas sadias. Jaguariúna: Embrapa-CNPMA. (Circular Técnica).

Goswami, D. Y., & Kreith, F. (2008). Energy conversion (1a ed.). Boca Raton: CRC Press, Taylor and Francis Group. (Mechanical engineering series).

Hafez, A. Z., Attia, A. M., Eltwab, H. S., Elkousy, A. O., Afifi, A. A., Abdelhamid, A. G., . . . Ismail, I. M. (2018). Design analysis of solar parabolic trough thermal collectors. Renewable and Sustainable Energy Reviews, 82(Part 1), 1215-1260. doi: 10.1016/j.rser.2017.09.010

Huang, B. J., & Sun, F. S. (2007). Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector. Energy Conversion and Management, 48(4), 1273-1280. doi: 10.1016/j.enconman.2006.09.020

Jebasingh, V. K., & Herbert, G. M. J. (2016). A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 54, 1085-1091. doi: 10.1016/j.rser.2015.10.043

Konar, A., & Mandal, A. K. (1991). Microprocessor based automatic sun tracker. IEE Proceedings A - Science, Measurement and Technology, 138(4), 237-241. doi: 10.1049/ip-a-3.1991.0032

Li, Z., Liu, X., & Tang, R. (2010). Optical performance of inclined south-north single-axis tracked solar panels. Energy, 35(6), 2511-2516. doi: 10.1016/j.energy.2010.02.050

Lima, M. C. Fº. (2014). Sistema de rastreamento solar com dois eixos para painéis fotovoltaicos, coletores cônicos, cilíndricos e parabólicos. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Fortaleza.

Liu, P., Zheng, N., Liu, Z., & Liu, W. (2019). Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Conversion and Management, 179, 30-45. doi: 10.1016/j.enconman.2018.10.057

Macedo-Valencia, J., Ramírez-Ávila, J., Acosta, R., Jaramillo, O. A., & Aguilar, J. O. (2014). Design, construction and evaluation of parabolic trough collector as demonstrative prototype. Energy Procedia, 57, 989-998. doi: 10.1016/j.egypro.2014.10.082

Malav, S., & Vadhera, S. (2015, june). Hardware implementation of solar tracking system using a stepper motor. Proceedings of the International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, Meghalaya, India, 2015. Retrieved from (https://ieeexplore.ieee.org/document/7510065). doi: 10.1109/EPETSG.2015.7510065

Marcos, J., Fº. (2005). Fisiologia de sementes de plantas cultivadas. Piracicaba: FEALQ. (Technical report).

Montgomery, D. C., & Runger, G. C. (2007). Applied statistics and probability for engineers (4th ed.). Hoboken: John Wiley and Sons Ltd. (Computational Science and Engineering Series).

Moraes, E. P. (2012). Seguidor solar de um único eixo inclinado. Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) - Centro Universitário de Brasília, Brasília.

Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and Sustainable Energy Reviews, 13(8), 1800-1818. doi: 10.1016/j.rser.2009.01.022

Mwesigye, A., & Meyer, J. P. (2017). Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Applied Energy, 193, 393-413. doi: 10.1016/j.apenergy.2017.02.064

Othman, N., Manan, M. I. A., Othman, Z., & Junid, S. A. M. A. (2013, november). Performance analysis of dual axis solar tracking system. Proceedings of the IEEE International Conferences on Control System, Computing and Engineering (ICCSCE). Mindeb, Malaysia, 2013. Retrieved from https://ieeexplore.ieee.org/document/6719992. doi: 10.1109/ICCSCE.2013.6719992

Partel, V., Kakarla, S. C., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339-350. doi: 10.1016/j.compag.2018.12.048

Rizvi, A. A., Addoweesh, K., El-Leathy, A., & Al-Ansary, H. (2014, october). Sun position algorithm for sun tracking applications. Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IECON), Dallas, Texas, USA, 40. Retrieved from https://ieeexplore.ieee.org/document/7049356. doi: 10.1109/IECON.2014.7049356

Santos, C. M. R., Menezes, N. L. D., & Vilella, F. A. (2005). Modificações fisiológicas e bioquímicas em sementes de feijão no armazenamento. Revista Brasileira de Sementes, 27(1), 104-114. doi: 10.1590/S0101-31222005000100013

Schneider, C. F., Gusatto, F. C., Malavasi, M. M., Stangarlin, J. R., & Malavasi, U. C. (2015). Thermotherapy on physiological and health quality of stored jatropha seeds. Semina: Ciências Agrárias, 36(1), 47-56. doi: 10.5433/1679-0359.2015v36n1p47

Suman, S., Khan, M. K., & Pathak, M. (2015). Performance enhancement of solar collectors: A review. Renewable and Sustainable Energy Reviews, 49, 192-210. doi: 10.1016/j.rser.2015.04.087

Sungur, C. (2009). Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renewable Energy, 34(4), 1119-1125. doi: 10.1016/j.renene.2008.06.020

Tanaka, M., Ito, M., Braga, C., & Armond, G. (2003). Tratamento térmico solar da água para controle de fitopatógenos. Fitopatologia Brasileira, 28(4), 386-393. doi: 10.1590/S0100-41582003000400007

Wolf, F. A., & Wolf, F. T. (1947). The fungi (Vol. I.) New York: John Wiley & Sons.




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n1p7

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional