Effects of essential oils of Cashew and Castor on intake, digestibility, ruminal fermentation and purine derivatives in beef cattle fed high grain diets

Sabrina Marcantonio Coneglian, Roman David Castañeda Serrano, Olga Teresa Barreto Cruz, Antonio Ferriani Branco


The objective of this study was to determine the effects of essential oils of Anacardium occidentale (Cashew) and Ricinus communis (Castor) on intake, digestibility, ruminal fermentation and excretion of purine derivatives in beef cattle fed high grain diets. Five Nellore steers fitted with ruminal cannula were used in a 5x5 Latin square design (21 days period). The treatments were control MON (0.2 g monensin animal day-1¬) and 1, 2, 4 and 8 g EO animal day-1 (Essential oils - Oligobasics®). All the animals had a basal diet, corn silage-based total mixed ration (TMR) of 80:20 concentrate:forage ratio. Intake, digestibility, ruminal fermentation and excretion of purine derivatives were determined over five consecutive days in each period. Intake and digestibility of dry matter (DM), neutral detergent fibre (NDF) and crude protein (CP) were not influenced by treatments (P > 0.05). However, increasing levels of EO showed a quadratic effect (P < 0.014) above 2 g animal day-1 on the ruminal pH. The excretion of allantoin and uric acid were not influenced by the treatments (P > 0.05), but levels above 2 g day decreased the synthesis of microbial proteins (P < 0.05). It is concluded that the EO of A. occidentale and R. comunnis effectively controlled ruminal fermentation as well as sodium monensin at the studied levels. EOs have the potential to be used in place of monensin in the studied levels.


Additives; Antibiotics; Bioactive compounds; Ionophores; Monensin; Plant extracts.

Full Text:



AHMED, M. G.; EL-ZARKOUNY, S. Z.; EL-SHAZLY, K. A.; SALLAM, S. M. A. Impact of essential oils blend on methane emission, rumen fermentation characteristics and nutrient digestibility in barki sheep. Journal of Agricultural Science, Cambridge, v. 6, n. 7, p. 144-156, 2014. Available at: http://www.ccsenet.org/journal/index.php/jas/article/view/35365. Accessed at: 1 sept. 2018. DOI: 10.5539/jas.v6n7p144

ANDO, S.; NISHIDA, T.; ISHIDA, M.; HOSODA, K.; BAYARU, E. Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa. Livestock Production Science, Amsterdam, v. 82, n. 2-3, p. 245-248, 2003. DOI: 10.1016/S0301-6226(03)00012-5


ATTANASI, O. A.; MELE, G.; FILIPPONE, P.; MAZZETTO, S. E.; VASAPOLLO, G. Synthesis and characterization of novel cardanol based fulleropyrridines. Arkivoc, Gainesville, v. 8, n. 8, p. 69-84, 2009. DOI: 10.1016/j.progpolymsci.2019.02.008

AUMEERUDDY-ELALFI, Z.; GURIB-FAKIM, A.; MAHOMOODALLY, M. F. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. Journal of Herbal Medicine, Munich, v. 6, n. 2, p. 88-95, 2016. DOI: 10.1016/j.hermed.2016.02.002

BABAYEMI, O. J.; DEMEYER, D.; FIEVEZ, V. In vitro rumen fermentation of tropical browse seeds in relation to their content of secondary metabolites. Journal of Animal Feed Sciences, Jab?onna, v. 13, p. 31-34, 2004. Supplement 1. DOI:.22358/jafs/70754/2004

BACH, A.; CALSAMIGLIA, S.; STERN, M. D. Nitrogen metabolism in the rumen. Journal of Dairy Science, Champaign, v. 88, p. E9-E21, 2005. Special Supplement. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0022030284814095. Accessed at: 1 sept. 2018. DOI: 10.3168/jds.S0022-0302(05)73133-7

BAKKALI, F.; AVERBECK, S.; AVERBECK, D.; IDAOMAR, M. Biological effects of essential oils - A review. Food and Chemical Toxicology, Sand Hutton, v. 46, n. 2, p. 446-475, 2008. DOI: 10.1016/j.fct.2007.09.106

BARRETO, O. T. C.; VALERO, M. V.; ZAWADZKI, F.; RIVAROLI, D. C.; PRADO, R. M. do; LIMA, B. S.; PRADO, I. N. do. Effect of glycerine and essential oils (Anacardium occidentale and Ricinus communis) on animal performance, feed efficiency and carcass characteristics of crossbred bulls finished in a feedlot system. Italian Journal of Animal Science, Abingdon, v. 13, n. 4, p. 790-797, 2014. DOI: 10.4081/ijas.2014.3492

BEAUCHEMIN, K. A.; MCGINN, S. M. Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. Journal of Animal Science, Champaign, v. 84, n. 6, p. 1489-1496, 2006. DOI: 10.2527/2006.8461489x

BELANCHE, A.; DOREAU, M.; EDWARDS, J. E.; MOORBY, J. M.; PINLOCHE, E.; NEWBOLD, C. J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. The Journal of Nutrition, Rockvillem v. 142, n. 9, p. 1684-1692, 2012. DOI: 10.3945/jn.112.159574

BENCHAAR, C.; CALSAMIGLIA, S.; CHAVES, A. V.; FRASER, G. R.; COLOMBATTO, D.; MCALLISTER, T. A.; BEAUCHEMIN, K. A. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, Wageningen, v. 145, n. 1-4, p. 209-228, 2008. DOI: 10.1016/j.anifeedsci.2007.04.014

BENCHAAR, C.; DUYNISVELD, J. L.; CHARMLEY, E. Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Canadian Journal of Animal Science, Toronto, v. 86, n. 1, p. 91-96, 2006. Available at: https://www.nrcresearchpress.com/doi/pdfplus/10.4141/A05-027. Accessed at: 1 sept. 2018. DOI: 10.4141/A05-027

BENCHAAR, C.; GREATHEAD, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, Wageningen, v. 166-167, n. Special issue, p. 338-355, 2011. DOI: 10.1016/j.anifeedsci.2011.04.024

BERGEN, W. G.; BATES, D. B. Ionophores: their effect on production efficiency and mode of action. Journal of Animal Science, Champaign, v. 58, n. 6, p. 1465-1483, 1984. DOI: 10.2527/jas1984.5861465x

BURT, S. Essential oils: their antibacterial properties and potential applications in foods. International Journal of Food Microbiology, Amsterdam, v. 94, n. 3, p. 223-253, 2004. DOI: 10.1016/j.ijfoodmicro.2004.03.022

BUSQUET, M.; CALSAMIGLIA, S.; FERRET, A.; KAMEL, C. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, Champaign, v. 89, n. 2, p. 761-771, 2006. Avaible at: http://linkinghub.elsevier.com/retrieve/pii/S0022030206721373. Accessed at: 1 sept. 2018. DOI: 10.3168/jds.S0022-0302(06)72137-3

CASTILLEJOS, L.; CALSAMIGLIA, S.; FERRET, A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Journal of Dairy Science, Champaign, v. 89, n. 7, p. 2649-2658, 2006. Avaible at: http://linkinghub.elsevier.com/retrieve/pii/S0022030206723414. Accessed at: 1 sept. 2018. DOI: 10.3168/jds.S0022-0302(06)72341-4

CASTILLEJOS, L.; CALSAMIGLIA, S.; FERRET, A.; LOSA, R. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology, Wageningen, v. 132, n. 3-4, p. 186-201, 2007. DOI: doi.org/10.1016/j.anifeedsci.2006.03.023

CHANEY, A. L.; MARBACH, E. P. Modified reagents for determination of urea and ammonia. Clinical Chemistry, Washington, v. 8, n. 2, p. 130-132, 1962. Available at: http://clinchem.aaccjnls.org/content/clinchem/8/2/130.full.pdf. Accessed at: 1 sept. 2018.

CHAO, S. C.; YOUNG, D. G.; OBERG, C. J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, Abingdon, v. 12, n. 5, p. 639-649, 2000. DOI: /0.1080/10412905.2000.9712177

CHEN, B. X.; METHIESON, J.; DEB HOVEL, F.; REEDS, P. J. Measurement of purine derivative in urine of ruminants using automated methods. Journal of the Science of Food and Agriculture, Hoboken, v. 53, n. 1, p. 23-33, 1990. DOI: 10.1002/jsfa.2740530104

CHEN, X. B.; GOMES, M. J. Estimation of microbial protein supply to sheep and cattle basid on urinary excretion of purine derivatives-an overview of the technical details. Aberdeen: Ed. Rowett Research Institute, 1992. 212 p. (Ocasional Publication).

CHEN, X. B.; MEJIA, A. T.; KYLE, D. J.; ØRSKOV, E. R. Evaluation of the use of the purine derivative-creatinine ratio in spot urine and plasma samples as an index of microbial protein supply in ruminants - Studies in Sheep. Journal of Agricultural Science, Cambridge, v. 125, n. 1, p. 137-143, 1995. DOI: 10.1017/S002185960007458X

COBELLIS, G.; TRABALZA-MARINUCCI, M.; YU, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review. Science of the Total Environment, Amsterdam, v. 546, p. 556-568, 2016. DOI: 10.1016/j.scitotenv.2015.12.103

DEWULF, J.; CATRY, B.; TIMMERMAN, T.; OPSOMER, G.; DE KRUIF, A.; MAES, D. Tetracycline-resistance in lactose-positive enteric coliforms originating from Belgian fattening pigs: degree of resistance, multiple resistance and risk factors. Preventive Veterinary Medicine, Amsterdam, v. 78, n. 3-4, p. 339-351, 2007. DOI: doi.org/10.1016/j.prevetmed.2006.11.001

DODDS, D. R. Antibiotic resistance: a current epilogue. Biochemical Pharmacology, Amsterdam, v. 134, p. 139-146, 2017. DOI: doi.org/10.1016/j.bcp.2016.12.005

EVANS, J. D.; MARTIN, S. A. Effects of thymol on ruminal microorganisms. Current Microbiology, New York, v. 41, n. 5, p. 336-340, 2000. DOI: 10.1007/s002840010145

FUJIHARA, T.; ØRSKOV, E. R.; REEDS, P. J.; KYLE, D. J. The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. The Journal of Agricultural Science, Cambridge, v. 109, n. 1, p. 7-12, 1987. DOI: 10.1017/S0021859600080916

GOÑI, P.; LÓPEZ, P.; SÁNCHEZ, C.; GÓMEZ-LUS, R.; BECERRIL, R.; NERÍN, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, Amsterdam, v. 116, n. 4, p. 982-989, 2009. DOI: /10.1016/j.foodchem.2009.03.058

GRENNI, P.; ANCONA, V.; CARACCIOLO, A. B. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal, Amstedam, v. 136, p. 25-39, 2018. DOI: doi.org/10.1016/j.microc.2017.02.006

HAMMOND, A. C. Update on BUN and MUN as a guide for protein supplementation in cattle. In: ANNUAL RUMINANT NUTRITION SYMPOSIUM, 3., 1992, Gainesville. Proceeding… Gainesville: University of Florida, 1997. p. 45-54, 1997. Avaible at: http://dairy.ifas.ufl.edu/rns/1997/frns1997.pdf. Accessed at: 1 sep. 2018.

HIMEJIMA, M.; KUBO, I. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. Journal of Agricultural and Food Chemistry, Washington, v. 39, n. 2, p. 418-421, 1991. DOI: 10.1021/jf00002a039

JENA, J.; GUPTA, A. K. Ricinus communis linn: a phytopharmacological review. International Journal of Pharmacy and Pharmaceutical Sciences, Bhopal, v. 4, n. 4, p. 25-29, 2012. Available at: https://www.researchgate.net/profile/Jitendra_Jena/publication/235417877_Ricinus_communis_linn_A_phytopharmacological_review/links/02e7e51a4eb786c21c000000/Ricinus-communis-linn-A-phytopharmacological-review.pdf. Accessed at: 1 Sept. 2018

JUTKINA, J.; MARATHE, N. P.; FLACH, C. F.; LARSSON, D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Science of the Total Environment, Amsterdam, v. 616-617, p. 172-178, 2018. DOI: 10.1016/j.scitotenv.2017.10.312

KADRI, A.; GHARSALLAH, N.; DAMAK, M.; GDOURA, R. Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. Journal of Medicinal Plants Research, Abuya, v. 5, n. 8, p. 1466-1470, 2011. Available at: http://www.academicjournals.org/JMPR. Accessed at: 1 sept. 2018.

KAHVAND, M.; MALECKY, M. Dose-response effects of sage (Salvia officinalis) and yarrow (Achillea millefolium) essential oils on rumen fermentation in vitro. Annals of Animal Science, Warsaw, v. 18, n. 1, p. 125-142, 2018. DOI: 10.1515/aoas-2017-0024

KHACHATOURIANS, G. G. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Canadian Medical Association, Ottawa, v. 159, n. 9, p. 1129-1136, 1998.

KHOLIF, A. E.; KASSAB, A. Y.; AZZAZ, H. H.; MATLOUP, O. H.; HAMDON, H. A.; OLAFADEHAN, O. A.; MORSY, T. A. Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Ruminant Research, Amsterdam, v. 161, n. 1, p. 43-50, 2018. DOI: 10.1016/j.smallrumres.2018.02.011

KHORSHIDIAN, N.; YOUSEFI, M.; KHANNIRI, E.; MORTAZAVIAN, A. M. Potential application of essential oils as antimicrobial preservatives in cheese. Innovative Food Science and Emerging Technologies, Amsterdam, v. 45, n. 1, p. 62-72, 2018. DOI: 10.1016/j.ifset.2017.09.020

KRAUSE, K. M.; OETZEL, G. R. Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Animal Feed Science and Technology, Wageningen, v. 126, n. 3-4, p. 215-236, 2006. DOI: 10.1016/j.anifeedsci.2005.08.004

KUBO, I.; NIHEI, K.; TSUJIMOTO, K. Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). Journal of Agricultural and Food Chemistry, Washington, v. 51, n. 26, p. 7624-7628, 2003. DOI: 10.1021/jf034674f

LAMBERT, R. J. W.; SKANDAMIS, P. N.; COOTE, P. J.; NYCHAS, G. J. E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, Oxford, v. 91, n. 3, p. 453-462, 2001. DOI: 10.1046/j.1365-2672.2001.01428.x

LOMONACO, D.; PINHEIRO SANTIAGO, G. M.; FERREIRA, Y. S.; CAMPOS ARRIAGA, Â. M.; MAZZETTO, S. E.; MELE, G.; VASAPOLLO, G. Study of technical CNSL and its main components as new green larvicides. Green Chemestry, Cambridge, v. 11, n. 1, p. 31-33, 2009. DOI: 10.1039/B811504

MAIA, J. G. S.; ANDRADE, E. H. A.; ZOGHBI, M. D. G. B. Volatile constituents of the leaves, fruits and flowers of cashew (Anacardium occidentale L.). Journal of Food Composition and Analysis, Atlanta, v. 13, n. 3, p. 227-232, 2000. DOI: 10.1006/jfca.2000.0894

MCGUFFEY, R. K.; RICHARDSON, L. F.; WILKINSON, J. I. D. Ionophores for Dairy cattle: current status and future outlook. Journal of Dairy Science, Champaign, v. 84, n. Suppl., p. E194-E203, 2001. DOI: 10.3168/jds.S0022-0302(01)70218-4

MCINTOSH, F. M.; WILLIAMS, P.; LOSA, R.; WALLACE, R. J.; NEWBOLD, C. J.; BEEVER, D. A. Effects of essential oils on ruminal microorganisms and their protein metabolism effects of essential oils on ruminal microorganisms and their protein metabolism. Applied and Environmental Microbiology, Washington, v. 69, n. 8, p. 5011-5014, 2003. DOI: 10.1128/AEM.69.8.5011-5014.2003

MEDJEKAL, S.; BODAS, R.; BOUSSEBOUA, H.; LÓPEZ, S. Evaluation of three medicinal plants for methane production potential, fiber digestion and rumen fermentation in vitro. Energy Procedia, Cambridge, v. 119, p. 632-641, 2017. DOI: 10.1016/j.egypro.2017.07.089

MERTENS, D. R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, Rockville, v. 85, n. 6, p. 1217-1240, 2002.

MINITAB. MINITAB release 17: statistical software for windows. Minitab Inc, USA, v.17, 2014.

MUROI, H.; KUBO, I. Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. Journal of Agricultural and Food Chemistry, Washington, v. 41, p. 1780-1783, 1993. DOI: 10.1021/jf00034a049

MUROI, H.; NIHEI, K. I.; TSUJIMOTO, K.; KUBO, I. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry, Cambridge, v. 12, n. 3, p. 583-587, 2004. DOI: 10.1016/j.bmc.2003.10.046

NAGABHUSHANA, K. S.; SHOBHA, S. V.; RAVINDRANATH, B. Selective ionophoric properties of anacardic acid. Journal of Natural Products, Washington, v. 58, n. 5, p. 807-810, 1995. DOI: 10.1021/np50119a029

NATIONAL RESEARCH COUNCIL – NRC. Nutrient requirements of beef cattle. Seventh Revised Edition. Whashington: The National Academies Press, 2006. p. 248. DOI: doi.org/10.17226/9791.

NEWBOLD, C. J.; MCINTOSH, F. M.; WILLIAMS, P.; LOSA, R.; WALLACE, R. J. Effects of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology, Wageningen, v. 114, n. 1-4, p. 105-112, 2004. DOI: 10.1016/j.anifeedsci.2003.12.006

PATRA, A. K.; YU, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, Washington, v. 78, n. 12, p. 4271-4280, 2012. DOI: 10.1128/AEM.00309-12

PLAYNE, M. J. Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. Journal of the Science of Food and Agriculture, Hoboken, v. 36, n. 8, p. 638-644, 1985. DOI: 10.1002/jsfa.2740360803

RIBEIRO, P. R.; CASTRO, R. D. de; FERNANDEZ, L. G. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: a review. Industrial Crops and Products, Amsterdam, v. 91, p. 358-376, 2016. DOI: 10.1016/j.indcrop.2016.07.010

RUSSELL, J. B.; STROBEL, H. J. Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, Washington, v. 55, n. 1, p. 1-6, 1989.

SANTSCHI, D. E.; CHIQUETTE, J.; BERTHIAUME, R.; MATTE, J. J.; MUSTAFA, A. F.; GIRARD, C. L. Effects of methods of collection and sample preparation on the concentrations of B-vitamins in ruminal fluid of dairy cows. Canadian Journal of Animal Science, Toronto, v. 85, n. 3, p. 417-420, 2005. DOI: 10.4141/A05-011

SMITH, A. M.; REID, J. T. Use of chromic oxide as an indicator of fecal output for the purpose of determining the intake of pasture herbage by grazing cows. Journal of Dairy Science, Champaign, v. 38, n. 5, p. 515-524, 1955. DOI: 10.3168/jds.S0022-0302(55)95006-2

SNIFFEN, C. J.; O’CONNOR, J. D.; VAN SOEST, P. J.; FOX, D. G.; RUSSELL, J. B. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science, Champaign, v. 70, n. 11, p. 3562-3577, 1992. DOI: 10.2527/1992.70113551x

SOLTAN, Y. A.; HASHEM, N. M.; MORSY, A. S.; EL-AZRAK, K. M.; EL-DIN, A. N.; SALLAM, S. M. Comparative effects of Moringa oleifera root bark and monensin supplementations on ruminal fermentation, nutrient digestibility and growth performance of growing lambs. Animal Feed Science and Technology, Wageningen, v. 235, p. 189-201, 2018a. DOI: 10.1016/j.anifeedsci.2017.11.021

SOLTAN, Y. A.; NATEL, A. S.; ARAUJO, R. C.; MORSY, A. S.; ABDALLA, A. L. Progressive adaptation of sheep to a microencapsulated blend of essential oils: ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Animal Feed Science and Technology, Wageningen, v. 237, p. 8-18, 2018b. DOI: 10.1016/j.anifeedsci.2018.01.004

STEINFELD, H.; WASSENAAR, T.; JUTZI, S. Livestock production systems in developing countries: status, drivers, trends. Revue Scientifique et Technique, Paris, v. 25, n. 2, p. 505-516, 2006.

SZUMACHER-STRABEL, M.; CIE?LAK, A. Dietary possibilities to mitigate rumen methane and ammonia production. In: LIU, G. (Ed.), Grand forks. 2012. p. 348. Available at: https://www.intechopen.com/books/greenhouse-gases-capturing-utilization-and-reduction/carbon-dioxide-geological-storage-monitoring-technologies-review. Acessed at: 1 sept. 2018.

TREVISAN, M. T. S.; PFUNDSTEIN, B.; HAUBNER, R.; WÜRTELE, G.; SPIEGELHALDER, B.; BARTSCH, H.; OWEN, R. W. Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food and Chemical Toxicology, Sand Hutton, v. 44, n. 2, p. 188-197, 2006. DOI: 10.1016/j.fct.2005.06.012

VAN DEN BOGAARD, A. E.; STOBBERINGH, E. E. Epidemiology of resistance to antibiotics: links between animals and humans. International Journal of Antimicrobial Agents, Amsterdam, v. 14, n. 4, p. 327-335, 2000. DOI: doi.org/10.1016/S0924-8579(00)00145-X

VAN SOEST, P. J.; ROBERTSON, J. B.; LEWIS, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, Champaign, v. 74, n. 10, p. 3583-3597, 1991. Avaible at: https://www.journalofdairyscience.org/article/S0022-0302(91)78551-2/pdf. Accesed at: 1 sept. 2018.

VIEIRA, C.; FETZER, S.; SAUER, S. K.; EVANGELISTA, S.; AVERBECK, B.; KRESS, M.; REEH, P. W.; CIRILLO, R.; LIPPI, A.; MAGGI, C. A.; MANZINI, S. Pro- and anti-inflammatory actions of ricinoleic acid: Similarities and differences with capsaicin. Naunyn-Schmiedeberg’s Archives of Pharmacology, Heidelberg, v. 364, n. 2, p. 87-95, 2001. DOI: 10.1007/s002100100427

WATKINS, P. J.; FRANK, D.; SINGH, T. K.; YOUNG, O. A.; WARNER, R. D. Sheepmeat flavor and the effect of different feeding systems: a review. Journal of Agricultural and Food Chemistry, Washington, v. 61, n. 15, p. 3561-3579, 2013. DOI: 10.1021/jf303768e

WILLIAMS, C. H.; DAVID, D. J.; IISMAA, O. The determination of chromic oxide in feces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, Cambridge, v. 59, n. 3, p. 381-385, 1962. DOI: 10.1017/S002185960001546X

YANG, W. Z.; BENCHAAR, C.; AMETAJ, B. N.; CHAVES, A. V.; HE, M. L.; MCALLISTER, T. A. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. Journal of Dairy Science, Champaign, v. 90, n. 12, p. 5671-5681, 2007. DOI: 10.3168/jds.2007-0369

ZARAI, Z.; CHOBBA, I.; MANSOUR, R.; BÉKIR, A.; GHARSALLAH, N.; KADRI, A. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids in Health and Disease, London, v. 11, n. 1, p. 2- 7, 2012. DOI: 10.1186/1476-511X-11-102

DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n5p2057

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional