Shape and size of soybean grains under different moisture contents

Wilker Alves Morais, Osvaldo Resende, Fernando Nobre Cunha, Vitor Marques Vidal, Nelmício Furtado da Silva, Lilian dos Santos Silva, Ana Carolina Oliveira Horschutz, Vera Lúcia Quintino

Abstract


Physical properties of soybean grains present differences as a function of cultivars and moisture content, with the correlation between physical properties. This study aimed to determine the characteristics related to the physical properties of grains with different moisture contents of three soybean cultivars. The experimental design was completely randomized design in a 3 × 6 factorial scheme with three replications, consisting of three soybean cultivars (6266 RSF IPRO, BMX Potência RR, and 14403Z6001) and six grain moisture contents (11, 13, 15, 17, 19, and 21% wb). Soybean grains presented an initial moisture content of 11.0, 11.0, and 10.8% wb, respectively for 6266 RSF IPRO, BMX Potência RR, and 14403Z6001. The other moisture contents were obtained by soaking in a BOD chamber maintained at 25 °C and 93% of relative humidity. We assessed volume, roundness, sphericity, surface area, volumetric shrinkage, and volumetric shrinkage rate. The data were submitted to the analysis of variance by the F-test (p < 0.05) and when significant, regression analysis was performed for grain moisture contents and the means of cultivars were compared by the Tukey’s test. Pearson’s correlation analysis was also carried out to represent the linearity between grain physical properties. The cultivar BMX Potência RR obtained the highest results for volume, roundness, sphericity, and surface area. Volume and surface area increased as the moisture content of soybean grains increased; the opposite was observed for roundness and sphericity. A linear increase in volumetric shrinkage was observed as moisture content increased. The values of the correlation coefficients of the linear regression models can be used to describe the relationships between physical properties.

Keywords


Surface area; Roundness; Volumetric shrinkage; Sphericity; Glycine max L; Volume.

Full Text:

PDF


DOI: http://dx.doi.org/10.5433/1679-0359.2018v39n6p2821

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433 / 1679-0359
E-mail:  semina.agrarias@uel.br
Este obra está licenciado com uma Licença  Creative Commons Atribuição-NãoComercial 4.0 Internacional