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Highlights

Mathematical modeling can be applied successfully in the evaluation of forage plants.

Prediction models can replace conventional chemical analyses for Tifton 85 grass. 

Crude protein content can be predicted with excellent accuracy using NIRS technology.

Abstract

The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal 

performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics 

in forage plants to devise strategies or practices that optimize production systems. The aim of this study 

was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the 

chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, 

leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional 

chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter 

(MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 

(ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the 

samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis 

(PCA) was applied to the data set, and modified partial least squares was used to correlate reference 
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values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 

0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 

3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The 

prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that 

the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, 

replacing conventional analysis.

Key words: Cynodon spp. Hay. Leaf blade. NIRS. Protein.

Resumo

A redução da qualidade, do consumo e da digestibilidade da forragem pode ocasionar a diminuição do 

desempenho animal, resultando em prejuízos ao produtor rural. Desta forma, é importante monitorar essas 

características em plantas forrageiras para definir estratégias ou práticas que otimizem os sistemas de 

produção. Objetivou-se desenvolver e validar modelos de predição pela espectroscopia de infravermelho 

próximo (NIRS), para determinar a composição química do capim Tifton 85 (Cynodon spp.). Foram utilizadas 

amostras de capim verde (planta inteira, lâmina foliar, colmo + bainha e material senescente) e de feno, da 

mesma gramínea, totalizando 105 amostras. As amostras foram submetidas a análise química convencional 

para determinação dos teores de amostra seca em estufa (ASE), matéria mineral (MM), proteína bruta (PB), 

fibra em detergente neutro (FDN), fibra em detergente ácido (FDA), lignina em detergente ácido (LDA), 

celulose (CEL), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). Posteriormente, todas 

as amostras foram escaneadas em espectrômetro Vis-NIR, para a coleta dos dados espectrais. Aplicou-

se a análise de componentes principais (PCA) ao conjunto de amostras, e utilizou-se a regressão por 

mínimos quadrados parciais modificadas para correlacionar valores de referência aos dados espectrais. 

Os coeficientes de determinação (R2) foram de 0,74; 0,85; 0,98; 0,75; 0,85; 0,71; 0,82, 0,77 e 0,93 e as 

taxas de desvio de performance (RPD) de 1,99; 2,71; 6,46; 2,05; 2,58; 3,84; 1,86; 2,35; 2,09 e 3,84 para 

ASE, MM, PB, FDN, FDA, LDA, CEL, HEM e DIVMS respectivamente, na etapa de validação. Os modelos de 

predição obtidos, em geral, foram considerados de boa qualidade, e demonstraram que a determinação 

da composição química do Tifton 85 pode ser realizada pela tecnologia NIRS, em substituição à análise 

convencional.

Palavras-chave: Cynodon spp. Feno. Lâmina foliar. NIRS. Proteína. 

Introduction

The production of Brazilian beef is 
mainly performed with the use of pastures. 
It is essential to monitor the nutritional 
composition of the plants, and conventional 
chemical analyses are performed for this. One 
of the most used perennial grasses in Brazil 
is Tifton 85 grass (Cynodon spp.), which is 
notable for its high nutritional quality and high 
forage production (Fonseca & Martuscello, 

2010). This grass can be used for grazing or 
in the form of hay, a strategy used in times of 
forage shortages, combined with monitoring of 
the chemical composition and changes related 
to the quality of the food.

Conventional chemical analysis, 
despite its standardization and worldwide 
acceptance, requires considerable time to 
perform, involves high operational costs with 
reagents and equipment, and results in the 
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inconvenience of environmental pollution, 
owing to the incorrect disposal of the 
analysis residues (Almeida et al., 2018). It is 
in fact recognized that this disposal must be 
conducted safely, so there is no contamination 
of water and soil. Chemical analysis with the use 
of reagents can also cause harm to laboratory 
technicians, who are routinely exposed to toxic 
and harmful components.

With the advancement of technology 
used in agricultural production, there is a need 
to update methods and techniques applied 
in production systems. Modeling applied to 
food analysis for animal nutrition is being 
used increasingly, such as the development of 
models of prediction of nutritional composition 
of forage plants using the near-infrared 
spectroscopy (NIRS) methodology with the 
aid of chemometric software. Chemometrics 
employs statistical and mathematical methods 
to correlate the chemical or physical properties 
of the material in question with analytical data 
(Lohumi, Lee, Lee, & Cho, 2015), represented 
by the electromagnetic information obtained 
using NIRS technology, thus enabling its use in 
chemical-bromatological analyses.

The NIRS methodology has been 
treated as an alternative to conventional 
chemical analysis because it does not use 
chemical reagents, has lower operational cost, 
and allows a wide analysis of food quickly, 
accurately, and without destruction of the 
sample (Deepa et al., 2016). The methodology 
is based on the interaction of near-infrared 
electromagnetic waves with a given sample, 
thus allowing the quantitative and qualitative 
evaluation of its constituents (Muñiz, 
Magalhães, Carneiro, & Viana, 2012).

The development of global calibration 
models or equations that establish the 

relationship between the laboratory reference 
values and the spectral data obtained by NIR 
absorption is a commonly used approach 
(Andueza, Picard, Martin-Rosset, & Aufrère, 
2016). It is important to emphasize that the 
success of the calibration step depends on the 
correct execution of the reference analyses to 
minimize any type of error that may affect the 
predictions made by the models developed 
(Kragten & Wyss, 2014). Calibration is the first 
stage performed to predict the nutritional 
value of forage using the NIRS methodology. 
The validation stage is then performed, which 
assesses the accuracy of the developed model 
and aims to ensure its credibility.

Thus, the present study aimed to 
develop prediction models for the chemical 
composition of Tifton 85 grass using NIRS. 

Material and Methods

In June 2017, 105 samples of Tifton 
85 grass (Cynodon spp.), cultivated on a 
property in the municipality of Arapongas, PR, 
were collected. The municipality is located 
at an altitude of 816 m, and the average 
annual temperature varies from 20.0 to 21.0 
°C, presenting the Cfa climate classification 
according to Köppen. The average annual 
rainfall varies from 1600 to 1800 mm, with 
January and December being the months with 
the highest rainfall volume (Nitsche, Caramori, 
Ricce, & Pinto, 2019). Roofing fertilization was 
performed with 25 kg ha-1 of urea 2 months 
before cutting. The experimental area had no 
irrigation system.

Twenty-one plots of 4 m² each of 
Tifton 85 grass were used, duly delimited 
and identified. The grass was cut at 105 
days of regrowth with a costal grass trimmer, 
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maintaining a residue height of 5 cm above the 
soil. After cutting, we sampled approximately 
500 g of grass from each plot for further analysis 
(whole plant and for morphological separation), 
and the rest of the material was placed on the 
plot for dehydration. After 72 h of cutting, when 
the grass reached the point of hay, a sample of 
approximately 500 g was collected for further 
analysis. The collected material was sent to 
the Bromatology Laboratory of the Pitágoras 
UNOPAR University – Campus Arapongas, for 
morphological separation of the samples and 
subsequent laboratory analyses.

A portion of the samples of green 
grass, approximately 60%, was subjected 
to morphological separation into the leaf 
blade (LB), stem + sheath (SS), and senescent 
material (SEN). After separation, samples of 
the morphological components and whole 
plant of the grass were dehydrated in the 
drying oven with forced air circulation at 55 °C 
(± 5 °C) for 72 h. Then, the samples of grass and 
its morphological and hay components were 
ground in a Willey-type mill with a 1 mm sieve, 
and the content of oven-dried samples was 
determined at 105 °C (ODS), that of mineral 
matter (MM) in a muffle furnace at 600 °C and 
of crude protein (CP) using the Kjeldhal method 
(Detmann et al., 2012).

Analyses of fibrous fractions and in 
vitro dry matter digestibility (IVDMD) were 
performed at the Animal Nutrition Laboratory 
of the State University of Londrina. The 
determination of neutral (NDF) and acid (ADF) 
detergent fiber in an autoclave, and acid 
detergent lignin (ADL) with 72% sulfuric acid 
were performed sequentially (Detmann et 
al., 2012), using bags of non-woven fabric 
(NW100). Sodium sulfite was used in the NDF 
analysis. Hemicellulose (HEM) was estimated 
by the difference between NDF and ADF, and 

cellulose (CEL) by the difference between ADF 
and ADL (Van Soest, Robertson, & Lewis, 1991).

The IVDMD of the samples was 
determined using the technique developed 
by Tilley and Terry (1963). The samples were 
packaged in NW40 bags and incubated with 
ruminal inoculum at 39 °C for 48 h in an artificial 
incubator (TE-421) with agitation at 80 rpm. The 
ruminal fluid used as inoculum was obtained 
from a slaughterhouse from slaughtered cattle 
reared in pasture.

All the results obtained in the chemical 
analyses and IVDMD are presented as a 
percentage of dry matter to facilitate their use 
in the development of calibration and validation 
models using the NIRS methodology.

The 105 samples obtained (21 each 
of whole plant samples of grass, LB, SS, SEN, 
and hay) from the Tifton 85 grass were sent to 
the Agricultural Research Support Laboratory 
(LAPA) of the State University of Londrina 
for spectral analysis. The samples were 
homogenized, packaged in specific cuvettes, 
and scanned in a Vis-NIR spectrometer (Foss 
NIRSystems XDS; Silver Spring, MD, USA) with a 
reflectance band between 400 and 2500 nm to 
produce the composite spectra. Each sample 
was scanned three times, thus generating 315 
spectra, to increase the digitized surface of the 
samples and reduce errors that may affect the 
prediction model (Yang et al., 2017).

The Kennard and Stone (1969) 
algorithm was used to separate the database 
during calibration and validation, creating 
independent sample subsets. A subset with 
210 spectra was used for model development 
for calibration, and another subset with the 
remaining 105 spectra was used for validation. 
Thus, the same source database was used for 
both calibration and validation, but without 
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using the same samples at each stage. 
Therefore, the calibration developed was 
validated with the initially excluded samples 
(Agelet & Hurburgh, 2010). Thus, of the total 
sample set, 2/3 was used to perform the 
calibration and 1/3 to validate the models.

The spectral data were converted into 
logarithms of the inverse reflectance [log (1/R)] 
and analyzed using The Unscrambler X, v.10.3 
(Camo Software ASA, Oslo, Norway). Principal 
component analysis (PCA) was applied to the 
set of samples to reduce the data dimension of 
the sample set and facilitate the interpretation 
of these data.

To correlate the reference values 
obtained from conventional chemical analyses 
to the spectral data of the calibration set, we 
used modified partial least squares regression 
(Shenk & Westerhaus, 1991). The samples 
considered as outliers were removed at the 
time of prediction model development. These 
outliers were selected visually and manually, 
considering the samples that altered or 
deviated from the trend line in relation to 
the reference values and predicted values, 
according to the procedure described by 
Roussel (2015).

To construct the graph of mean spectra, 
the spectral values of the reading of each 
sample were used, considering the average of 
the values of each structure and type of forage 
(LB, SS, SEN, whole plant of grass, and hay).

Before the calibration stage, the spectra 
were subjected to mathematical pretreatments 
for correction of light dispersion, noise removal, 
and baseline correction, such as the 1st and 
2nd derivative Savitzky–Golay smoothing with 
a window ranging from 1 to 15 points, and the 
standard normal variation transformation.

The efficiency of the calibration 
and validation models was evaluated using 
statistical parameters such as the standard 
error of calibration (SEC) and prediction (SEP) 
and the calibration and validation determination 
coefficients (R2), and the calibration and 
validation ratio of performance deviation 
(RPD), calibration and validation range error 
ratio (RER), and the optimal number of factors 
(N) were used for model development. The 
RPD was calculated as the ratio between the 
standard deviation and the value of either SEC 
or SEP (P. C. Williams & Sobering, 1993). The 
RER was calculated by dividing the amplitude of 
the concentration range of the analytical data 
by either SEC or SEP (P. C. Williams & Sobering, 
1996). For standard errors, we considered 
those with SEP values 1.3 times higher, at 
most, than the SEC values (Windham, Mertens, 
& Barton, 1989). The optimal number of factors 
in the development of the models was selected 
based on the response of greater variance and 
by the lowest mean error square root value 
(Gontijo Neto, Simeone, & Guimarães, 2012).

Results and Discussion

Considerable variability was observed 
in the chemical composition of Tifton 85 
grass (Table 1). IVDMD and the levels of ADF, 
CEL, HEM, NDF, and CP showed the largest 
variations, with amplitudes of 37%, 24%, 
21%, 20%, 15%, and 13%, respectively. This 
variability occurred owing to the different 
proportions of the plant that were analyzed 
as samples of LB, SS, and SEN, in addition to 
the whole plant of grass and hay, thus, creating 
a wide set of values. Variations of this type 
are a positive factor in the calibration using 
NIRS to predict the chemical composition of 
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different forages (Lobos, Gou, Hube, Saldaña, 
& Alfaro, 2013). It is important to note that 
higher NDF content, such as those found in 
the SS, SEN, and hay fractions (Table 2), can 
negatively influence the nutritional value of 
these fractions owing to higher amounts of cell 
wall compounds such as CEL, HEM, lignin, and 

insoluble protein (Van Soest, 1994). In contrast, 
the components of cellular content, such as 
soluble carbohydrates and CP, are present in 
greater quantities in LF and whole grass plants 
(Table 2), which increases the quality of this 
fraction.

Figure 1 shows the mean spectra 
resulting from the set of samples of LB, SS, 
SEN, green grass, and hay. The observed 
behavior was characterized by different levels 
of absorbance according to the analyzed 
group. The samples of grass and hay showed 
spectral similarity, represented by the 
overlapping lines, possibly because the main 

Table 1
Descriptive analysis of the chemical composition (% of dry matter) of Tifton 85 grass (Cynodon spp.) 
determined using conventional chemical analysis (reference methods)

Variable Minimum (%) Mean (%) Maximum (%) SD (%)

DM (%) 30.07 43.37 75.59 13.49

ODS (%) 87.84 93.59 97.09 1.86

MM (%) 5.62 8.03 10.00 0.97

CP (%) 4.18 9.61 17.29 3.23

NDF (%) 64.92 71.72 79.74 3.01

ADF (%) 23.93 34.63 48.40 4.59

ADL (%) 0.75 3.54 6.60 1.32

CEL (%) 22.69 31.08 43.83 3.62

HEM (%) 26.75 37.08 47.06 4.52

IVDMD (%) 43.90 64.48 80.83 8.67

DM, dry matter; ODS, oven dried sample; MM, mineral matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid 
detergent fiber; ADL, acid detergent lignin; CEL, cellulose; HEM, hemicellulose; IVDMD, in vitro dry matter digestibility; 
SD, standard deviation.

difference between these samples was the 
process of haymaking, thus demonstrating 
a similar chemical composition. There was a 
small numerical difference between these two 
materials only for NDF and IVDMD (Table 2), in 
which the drying process increased the NDF 
and reduced the IVDMD of the hay.
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Table 2
Chemical composition (% of dry matter) of the whole plant, hay, and morphological components of 
Tifton 85 grass (Cynodon spp.)

Variable Whole plant LB SS SEN Hay

ODS (%) 95.23 93.92 94.05 93.98 90.73

MM (%) 8.08 8.86 7.01 8.19 8.02

CP (%) 9.39 14.96 6.80 6.61 10.28

NDF (%) 68.91 69.65 71.64 75.51 72.88

ADF (%) 37.65 27.13 33.96 36.19 38.20

ADL (%) 4.37 1.57 3.74 3.82 4.23

CEL (%) 33.28 25.56 30.22 32.36 33.97

HEM (%) 31.25 42.50 37.67 39.32 34.67

IVDMD (%) 70.25 73.48 64.60 50.10 63.98

LB, leaf blade; SS, stem + sheath; SEN, senescent material; ODS, oven dried sample; MM, mineral matter; CP, crude protein; 
NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin; CEL, cellulose; HEM, hemicellulose; 
IVDMD, in vitro dry matter digestibility.

Figure 1 shows the mean spectra resulting from the set of samples of LB, SS, SEN, green grass, 

and hay. The observed behavior was characterized by different levels of absorbance according to the 

analyzed group. The samples of grass and hay showed spectral similarity, represented by the overlapping 

lines, possibly because the main difference between these samples was the process of haymaking, thus 

demonstrating a similar chemical composition. There was a small numerical difference between these two 

materials only for NDF and IVDMD (Table 2), in which the drying process increased the NDF and reduced 

the IVDMD of the hay. 
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The spectra obtained from the LB 
and SS samples showed a greater distinction 
in the absorbance between the structures, 
which may be linked to the amount of cellular 
content components, that is, the best chemical 
composition of the samples with respect to LB 
(Table 2). The LB samples presented greater 
absorbance than the other morphological 
components, mainly in peaks around 1900, 
2100, and 2300 nm, which although containing 
low fiber content, presented these high 
peaks. However, the presentation of these 
peaks is mainly owing to the N-H bonds that 
characterize protein molecules (Guerra, 2019; 
Schwanninger, Rodrigues, & Fackler, 2011) and 
the digestibility of the samples (Decruyenaere 
et al., 2009). A spectral band overlay found at 
approximately 1450 nm may characterize the 
absorption region associated with an O-H 
(water) harmonic transaction (Arzani, Sanaei, 
Barker, Ghafari, & Motamedi, 2015).

Regarding the representative spectra of 
SEN samples, these differed the most from the 
other sample groups, with lower absorbance 
(spectral range approximately 1465–1831 and 
2000–2439 nm), probably because of the low 
digestibility of this morphological component. 
According to Decruyenaere et al. (2009), there 
is greater absorbance in samples with better 
digestibility. In this study, the LF samples 
presented better IVDMD, and consequently, 
greater absorbance in relation to the samples 
of SEN.

Figure 2 illustrates the spectral 
variability according to the PCA related to 
the spectra of Tifton 85 samples. From the 
three principal components that were used 
to construct the models, two components 
corresponded to 96% of the data variability, of 
which 82% was explained by component 1 (CP 
1) and 14% by component 2 (CP 2).

Figure 2. Principal components analysis (PCA) of the samples grouped according to the type of 
roughage and morphological components of the forage. 
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In addition, Figure 2 shows the formation 
of possible groups, according to the type of 
roughage (grass and hay) and morphological 
components (LB, SS, and SEN). This separation 
also shows the similarities in the chemical 
composition between the groups, such as 
grass and hay, and greater discrepancy in SEN, 
confirming the differences in nutritional value 
observed among these materials as shown in 
Table 2. The considerable levels of the fibrous 
fraction components in the SEN samples 
associated with their lower absorbance were 
evidenced in the formation of this group in the 
PCA (Figure 2). Considering the whole plant 
samples of grass and hay, as mentioned above, 
because they correspond to the same source 
material, they differed only in the values of NDF 
and IVDMD and showed similar absorbance. 
In relation to the LB and SS samples, their 

distribution in the graph was probably also 
influenced by the higher degree of absorbance 
of the cellular components present in the 
leaves, which have a better bromatological 
composition.

In the calibration stage, results of R² 
equal to or above 0.70 were obtained, with 
the lowest value observed for ADL (0.70) and 
the highest value for BP (0.96), and an RPD 
greater than 2.5 for the variables MM, CP, 
and IVDMD (Table 3). The validation results 
for the MM, CP, ADF, CEL, and IVDMD models 
presented R2 values greater than 0.80 and 
RPD greater than 2.5 for MM, CP, and IVDMD 
(Figure 3). Calibration errors were similar to the 
errors in the validation step, indicating good 
accuracy between the results obtained from 
conventional chemical analyses and those 
from near-infrared spectroscopy.

Table 3
Calibration parameters of the prediction models to determine the nutritional composition of Tifton 85 
grass (Cynodon spp.)

Variable
Mathematical 
pre-treatment

n Mean (%) SEC (%) R2 RPD RER N

ODS (%) SG 129 198 93.51 0.86 0.78 2.13 10.76 7

MM (%) SG 129 205 8.09 0.38 0.84 2.50 11.53 6

CP (%) SG 1215 209 9.61 0.60 0.96 5.28 21.85 5

NDF (%) SG 129 203 71.66 1.34 0.80 2.26 11.06 6

ADF (%) - 199 34.55 2.05 0.80 2.20 9.20 5

ADL (%) SG 1215 199 3.49 0.71 0.70 1.82 7.35 6

CEL (%) - 201 31.01 1.67 0.77 2.07 8.66 6

HEM (%) SNV 193 37.13 2.09 0.78 2.12 8.26 5

IVDMD (%) SG 129 202 64.04 2.31 0.93 3.69 13.87 6

LB, leaf blade; SS, stem + sheath; SEN, senescent material; ODS, oven dried sample; MM, mineral matter; CP, crude protein; 
NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin; CEL, cellulose; HEM, hemicellulose; 
IVDMD, in vitro dry matter digestibility; SEC, standard error of calibration; R2, coefficient of determination of calibration; 
RPD, ratio of performance deviation; RER, range error ratio; N, number of factors used in model development. 
Mathematical pre-treatments – SG 129, Savitzky–Golay: 1ª derivative, 2º degree polynomial, smoothing 9; SG 1215, 
Savitzky–Golay: 1ª derivative, 2º degree polynomial, smoothing 15; SNV, standard normal variance transformation;  
without the use of mathematical pre-treatment.
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Figure 3. Validation of the prediction models for chemical composition and in vitro dry matter digestibility 
of Tifton 85 grass (Cynodon spp.).  
ODS, oven dried sample; MM, mineral matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid 
detergent fiber; ADL, acid detergent lignin; CEL, cellulose; HEM, hemicellulose; IVDMD, in vitro dry 
matter digestibility; DM, dry matter, SEP, standard error of prediction; R2, coefficient of determination of 
prediction; RPD, ratio of performance deviation; RER, range error ratio; N, number of factors used in model 
development.  
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and at most 1.3 times greater than that of the SEC (Windham et al., 1989). The evaluation of the model using 

SEP is important because of its relationship with the reference laboratory analyses, which should be 

performed well. High SEP values may represent factors related to the physical and chemical composition of 

the samples, and very low values may indicate homogeneity of the samples used in the calibration (Kragten 

& Wyss, 2014). 

Regarding the RPD, which evaluates the predictive capacity of the developed model, P. C. 

Williams and Sobering (1996) considered 2.5 as the minimum value. Goldshleger, Chudnovsky and Ben-

Binyam (2013) classified the models according to RPD values considering values below 1.5 as unusable; 

those between 1.5 and 2.0 as usable for the distinction between models of high and low predictability; those 

between 2.0 and 2.5 as models with the possibility of quantitative prediction; and those between 2.5 and 3.0 

or above 3.0, as models of excellent predictive ability. Very low RPD values (approximately 1.0) 

demonstrate that the SEP value and sample standard deviation are the same, and thus, the prediction is 

compromised (P. C. Williams & Sobering, 1993). To evaluate the practical usefulness and accuracy of a 

predictive model, one can use the RER that must have values above 10 (P. C. Williams & Sobering, 1996). 

Combining values of RPD greater than 3 and RER greater than 10, there is an indication of a good prediction 

for quantitative analyses (P. Williams, 2014). 

The set of results of the validation stage was used for the general evaluation of the models (Figure 

Figure 2. Validation of the prediction models for chemical composition and in vitro dry matter 
digestibility of Tifton 85 grass (Cynodon spp.). 
ODS, oven dried sample; MM, mineral matter; CP, crude protein; NDF, neutral detergent fiber; ADF, 
acid detergent fiber; ADL, acid detergent lignin; CEL, cellulose; HEM, hemicellulose; IVDMD, in 
vitro dry matter digestibility; DM, dry matter, SEP, standard error of prediction; R2, coefficient of 
determination of prediction; RPD, ratio of performance deviation; RER, range error ratio; N, number 
of factors used in model development. 

The statistical parameters used to 
evaluate the models should be analyzed 
together so that there is reliability in the 
interpretation and the potential for future use. 
The R² values are used to evaluate the accuracy 
of these models; R² values above 0.80 indicate 
a model quality considered satisfactory to 
good, and R² values above 0.90 are considered 
excellent (Tran et al., 2010). Associated with 
these high R² values, the values related to 
standard errors determine the accuracy and 
robustness of the model. The SEP must be 
small and at most 1.3 times greater than that of 
the SEC (Windham et al., 1989). The evaluation 
of the model using SEP is important because 
of its relationship with the reference laboratory 
analyses, which should be performed well. 
High SEP values may represent factors related 
to the physical and chemical composition of 
the samples, and very low values may indicate 

homogeneity of the samples used in the 
calibration (Kragten & Wyss, 2014).

Regarding the RPD, which evaluates 
the predictive capacity of the developed 
model, P. C. Williams and Sobering (1996) 
considered 2.5 as the minimum value. 
Goldshleger, Chudnovsky and Ben-Binyam 
(2013) classified the models according to 
RPD values considering values below 1.5 as 
unusable; those between 1.5 and 2.0 as usable 
for the distinction between models of high and 
low predictability; those between 2.0 and 2.5 
as models with the possibility of quantitative 
prediction; and those between 2.5 and 3.0 or 
above 3.0, as models of excellent predictive 
ability. Very low RPD values (approximately 1.0) 
demonstrate that the SEP value and sample 
standard deviation are the same, and thus, 
the prediction is compromised (P. C. Williams 
& Sobering, 1993). To evaluate the practical 
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usefulness and accuracy of a predictive model, 
one can use the RER that must have values 
above 10 (P. C. Williams & Sobering, 1996). 
Combining values of RPD greater than 3 and 
RER greater than 10, there is an indication of 
a good prediction for quantitative analyses (P. 
Williams, 2014).

The set of results of the validation 
stage was used for the general evaluation of 
the models (Figure 3), using R² and SEC/SEP 
values to evaluate accuracy and precision 
respectively. The number of optimal factors 
for the development of the models presented 
values between 5 and 7, remaining at the 
recommended limit of 6 to 8 factors. When this 
number is too high or low, it may contain noise 
and validation failures or not be enough for 
modeling (Williams, Dardenne & Flinn, 2017).

The best proposed models of the 
analyzed database were for CP (R² = 0.98, 
RPD = 6.46 and RER = 25.21, N = 5) and IVDMD 
(R² = 0.93, RPD = 3.84 and RER = 13.69, N = 
6). The constitution of the protein’s chemical 
structure favors the prediction of this nutrient 
using the NIRS methodology, as the molecules 
of carbon, hydrogen, oxygen, and nitrogen 
that make up the protein molecule present 
a large number of bonds, such as those of 
N-H (Guerra, 2019; Oliveira, 2017), which 
absorb more irradiated light, providing better 
detection of absorbance bands. Therefore, 
good models were generated, corroborating 
the information described by Gontijo Neto et al. 
(2012), Lobos et al. (2013), and Guerra (2019), 
where evaluation of tropical and temperate 
forages was performed, and the R² values 
obtained were above 0.90 associated with low 
error values, which indicates good accuracy 
and precision of the models.

Considering the prediction of IVDMD 
by NIRS, it should be noted that there is a 
dependence related to the protein and fibrous 
content of the analyzed sample (Guerra, 
2019). Therefore, IVDMD can be successfully 
predicted from the chemical composition of 
the samples, even though there is no direct 
relationship with the vibrational energy of the 
molecules that are normally detected by the 
NIRS methodology (Roberts, Stuth, & Flinn, 
2004). The most striking spectral regions in 
the development of the model were near the 
wavelengths of 1370, 1700, 1750, 2002, and 
2300 nm, with the presence of O-H, C-O, C-H, 
N-H bonds that can be related to fiber and 
protein content.

The prediction model developed for 
ODS was considered adequate (R² = 0.74, 
RPD = 1.99 and RER = 10.69, N = 7), according 
to the classification of these parameters by 
Goldshleger et al. (2013), Tran et al. (2010) and 
P. C. Williams & Sobering (1996). Possibly, to 
improve the quality of this model, the inclusion 
of more samples would be useful.

Good results were obtained in the 
development of the MM prediction model (R² = 
0.85, RPD = 2.71 and RER = 12.31, N = 6), which 
can be explained by the formation of complexes 
between minerals and organic molecules 
present in the samples, enabling the detection 
of absorption bands in the near-infrared 
region (Roberts et al., 2004) (Figure 3). The 
occurrence of these complexes is important, 
as the prediction of the mineral portion of 
forage plants may be underestimated by the 
fact that saline and ionic forms do not have 
energy absorption in the near-infrared region 
(Shenk & Westerhaus, 1994).

Among the models related to the 
fibrous portion, it was observed that the ADF 
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model presented the best results (R² = 0.85, 
RPD = 2.58 and RER = 10.96, N = 5), whereas 
for NDF, CEL, and HEM, the models can be 
considered of satisfactory quality (Figure 3). 
The spectral ranges for creating the models 
were 1100–2448 nm for ADF, 1108–2472 
nm for NDF, 1100–2464 nm for CEL, and 
1100–2248 nm for HEM. The prediction of the 
fibrous fraction of tropical grasses can often 
be compromised owing to its biochemical 
complexity (Molano, Cortés, Ávila, Martens, 
& Muñoz, 2016). In general, this fraction 
comprises different chemical groups involving 
different spectral regions as well as the relation 
between the spectrum and the reference 
method (Brogna et al., 2018). For ADL content 
prediction, the model developed (spectral 
range 1114–2466 nm) presented lower quality 
(R² = 0.71, RPD = 1.86 and RER = 7.29, N = 6) 
and could only be used to distinguish high and 
low values (Goldshleger et al., 2013). This can 
be explained by the fact that this is a complex 
polymer and laborious quantification involving 
several stages of analysis and is considered 
a component indigestible to animals (Guerra, 
2019; Van Soest, 1994).

In the distribution graph (Figure 3), it 
was possible to observe that the best models 
obtained for CP and IVDMD represented the 
nutrient dynamics in each group of samples 
analyzed in relation to the roughage type and 
morphological component. These graphs 
show that the analyzed data are well distributed 
and adjusted to the trend line, with the samples 
comprising the confidence interval (Fekadu et 
al., 2010) and characterized according to the 
chemical composition, which can be observed 
in the present study.

In the validation of the prediction 
models of the variables CP and IVDMD, there 
was a linear behavior well-adjusted to the 

trend line. For the CP prediction model, it 
was verified that the data were distributed 
according to the chemical composition, and 
the LB samples presented high CP content, 
and the SS and SEN samples presented the 
lowest CP content. Green grass and hay 
showed intermediate values. In the prediction 
models of IVDMD, it was observed that the 
data distribution was also in accordance with 
the digestibility percentage. There was greater 
digestibility in LB and green grass samples, 
and lower digestibility in SEN. The SS and 
hay samples presented intermediate values. 
Therefore, for both variables, CP and IVDMD, 
there was a linear behavior; however, the profile 
of variation in CP content between the types of 
material (grass and hay) and the morphological 
components differed from those presented by 
the IVDMD models.

As for the models developed for NDF, 
CEL, and HEM, which presented satisfactory 
quality, it was possible to verify in the 
distribution graphs that the behavior of the 
samples in relation to the trend line was more 
dispersed, as in the case of ADL. This indicates 
that including more samples into the database 
could be an adjustment solution for these 
models.

The results obtained with the prediction 
models developed indicate the possibility of 
the practical application of these models in the 
analysis of the chemical composition of grass 
and hay from Tifton 85. It is important to point 
out that to ensure the success of these models, 
one must test them with more samples of the 
same grass. Therefore, it is suggested that the 
prediction models obtained in this study are 
tested with samples external to the models 
developed, and that they originate from other 
regions.
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Conclusions

The prediction models developed using 
NIRS for the determination of mineral matter, 
crude protein, acid detergent fiber and in vitro 
dry matter digestibility of Tifton 85 grass, have 
good accuracy and can be considered as an 
alternative to conventional chemical analysis 
of this grass. To further improve the accuracy of 
the models, it is suggested that more samples 
are included into the database with external 
samples from various regions.
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