O POLIMORFISMO DA ESTERASE D
CHRISTINE PIETRARDOA NOGUEIRA*

RESUMO

Título de revisão sobre caracterização da Esterase D (ESD).
1. O POLIMORFISMO DA ESTERASE D (ESD).
2. ESTRUTURA E FUNÇÃO.
3. POLIMORFISMO E APLICAÇÃO.
4. CONCLUSÃO.

Já foram descritos quatro sistemas isoenzimáticos de esterases humanas, os zincomarases de hemolitos humanos, obtidos com o uso da coloração convencional com 4-nitro bifenil, permitem detectar apenas três esteras não polimórficas, denominadas A, B e C (uma revisão sobre este assunto é apresentada por COVES e aliados[1]).

HOPKINSON e aliados[2], utilizando ésteres de compostos flavonógenos (acetato e butirato de 4-metil umbélicofenona) demonstraram a presença de mais uma esterase que foi denominada “Esterase D”. Esta esterase não tem afinidade por ésteres de naphtal, não tem função conhecida, apresenta ampla distribuição nos tecidos e é polimórfica, (HOPKINSON e aliados[2]; COATES e aliados[3]; DONALD e SIMOES[4]).

Inicialmente foram descritos três padrões isoenzimáticos da ESD (HOPKINSON e aliados[5]; ESD 1 e ESD 2 (homozigotos) e ESD 2-1 (heterozigoto), compatíveis com uma enzima de estrutura dimérica (figura 1). Estes autores estimaram o peso molecular do monômero em 30.000 e propuseram que os padrões isoenzimáticos correspon- diam a dois alelos codominantes (ESD1 e ESD2), num locus autosômico, o que foi confirmado em análises familiares posteriores (BENKAMM e GOEDDE[5]; ISHIMOTO e aliados[6]; RITTERN e MULLER[7]; EBELI-STUJK e aliados[8]; outros estudos). Há evidências que a variabilidade de ESD identificada nos diversos tecidos seja produto de um único locus, pois o fenótipo identificado nos tecidos de um mesmo indivíduo é sempre o mesmo (HOPKINSON e aliados[9]).

Além dos fenótipos já mencionados, há a descrição de outros patônicos como BENDER e FRANK[10], descobertos o primeiro variante de ESD em um indivíduo do sudoeste da Alemanha, sendo o fenótipo correspondente, ESD 3-1. Posteriormente este alelo foi também detectado em indivíduos de SÃO PETERSBURGO[11], da Bélgica (SARGAGINS e aliados[12]) e em papa de Nova Guiné (BLAKE[13]).

OMOTO e aliados[14] descreveram frequentemente de alelos ESD3-1 e ESD3-2. A mobilidade de ESD 3N é semelhante à do ESD 3, mas acredita-se que este alelo diferente daquele encontrado em populações europeias: a população em que ele foi encontrado é isolada geograficamente das outras, e este alelo não foi detectado na população de não negros das Filipinas. Além disso o referido alelo é raro nas populações europeias, e nas Filipinas atingiu frequência de polimorfismo (ESD3N 0.0100). Este é o único alelo de ESD, além dos alelos mais comuns (ESD1 e ESD2) a atingir frequência polimórfica.

 BERG e aliados[15] descobriram o produtor do ESD 3 (ESD 4-1 e 4-2); MARTIN[16] descobriu o produto do alelo ESD 3 (ESD 5-1) e RÁDAM e aliados[17] descobriram o produto do alelo ESD 6 (ESD 6-1). Os fenótipos de ESD já descritos estão esquematizados na figura 1. Também foi descrito um alelo silencioso para ESD, o ESDP: os portadores deste alelo apresentam baixa atividade de ESD, detectada tanto na eleetroforese quanto no ensaio bióquímico (MARES e aliados[18]; SPARKES e aliados[19]; KOZIOI e STEPHAN[20]).

Até o momento os estudos de li- gição não apresentaram nenhum resultado conclusivo da ligação da ESD com outro marcador genético (LEWIS e aliados[24]; ROBINSON e aliados[25]; SHOWS e aliados[26]; SIGRENSEN e FENGER[27]).

*Professora Assistente do Departamento de Patologia, Legislação e Doenças, CCS - Fundação Universidade Estadual de Londrina.

313
MORO-FURLANF(10), SPARKES et al.(23).

Foram feitos estudos para se verificar a aplicabilidade da ESD em testes de exclusão de paternidade, e os resultados demonstraram que esse sistema isoxonimétrico é útil em tais casos (WELCH(23)), além de ser relativamente fácil a sua execução.

2 - ESTUDO POPULACIONAIS SOBRE O POLIMORFISMO DA ESTERASE D.

A análise das frequências do alelo ESD1 nas populações estudadas demonstra variação entre as diferentes populações, com diminuição na frequência desse alelo na Europa e Ásia (figura 3), mas não obtida em maior frequência na África e no Brasil. Pode-se observar que entre os europeus as variações na frequência do ESD1 são pequenas. Os lápis são uma exceção, pois há estudos que mostram uma frequência relativamente mais baixa do ESD1 entre eles, em relação aos europeus de forma geral, chegando a se aproximar daquelas obtidas em populações da África. Estes estudos provavelmente podem ser explicados pela origem étnica dos lápis (WELCH & LEGE(23)).

As populações negras possuem uma frequência do ESD1 um pouco mais alta que a dos europeus, com os pigmentos apresentando uma frequência desse alelo que se afasta das obtidas para outras populações negrides. As populações anátiitas mostram uma frequência relativamente mais baixa de ESD1 (todas estão comparando podem ser observadas na figura 3 e 4).

Esses estudos mostram também que várias amostras populacionais apresentam frequências fenotípicas significativamente discrepantes, que seriam esperadas pelo equilíbrio de Hardy-Weinberg, havendo, em geral, um excesso de homozigotos. As causas deste equilíbrio ainda não foram identificadas, embora pareçam mais prováveis as hipóteses de uma possível seleção contra o heterozigoto e/ou a presença do alelo silenciado, do que a possibilidade de erro têcnico, como propôs Donald, em 1976 (cf SIME(23)).

O estudo do polimorfismo da ESD apresenta enormes perspectivas, e diversos aspectos relativos à possibilidade de estudos são novos enfoques. Pode-se ressaltar:

- Estudos de polimorfismo em alguns grupos raciais ainda não estudados, principalmente na América Latina e Ásia.
- Estudos sobre diferenciação genética entre populações, sob o enfoque desse polimorfismo.
- Estudo sobre o alelo silencioso e as apteções constantes nas populações causadas por esse alelo.
- Estudo sobre as frequências de diferentes eletroforeses privados desse polimorfismo, em populações isoladas, tais como aborígenes australianos, esquimós e indígenas.
- Estudo sobre o alelo ESD3, uma vez que parece existir dois alelos com mobilitade eletroforeticas semelhantes: o alelo 2 "forte" e o alelo 2 "fraco".
- Estudos sobre o desvio do equilíbrio de Hardy-Weinberg, observado em diversas populações e ainda não esclarecido.
- Estudo de ligação desse polimorfismo com genes já mapeados no cromossomo 13: retinoblastoma-1 (13q14-13q21-22), lipoproteína LP (cromossomo 13, ainda sem localização definitiva em subregiões), para observar entre outras coisas, desequilíbrio de ligação.
- Estudo de mapeamento de outros genes, principalmente pelo fato de termos marcadores localizados no cromossomo 13.
- Estudos cinéticos sobre essa enzima e suas relações com as outras enzimas, principalmente no que se refere à especificidade de substrato, do tipo inibidores e estabilidade frente a diversos agentes.
- Estudos de dosagem desse marcador em transtornos, deleções e outras alterações cromossômicas envolvendo o cromossomo 13.
- Estudo desse marcador e possíveis associações com doenças, há que há inúmeras doenças que parecem ter um componente genético, ainda não identificado ou mapeado.
FIGURA 3: Representação esquemática das frequências do alelo ESD em diversas populações

ABSTRACT

Review about the population genetics of Esterase D (ESD – E.C. 3.1.1.1), its alleles and gene frequencies in some populations and among the continents.

Agradecimentos a Maria Inês P. Costa pelas correções efetuadas e pelos serviços de datilografia.

REFERÊNCIAS BIBLIOGRÁFICAS

02 - BENDER, K. & GRZESCHLIK, K.H. Assignment of the gene for human Glosulase I to

13. LEWIS, M.; KAUF, H.; CHOWN, R.; ROWAN, P.; LEE, C.S.N.; Mc

14. MARKS, M.P.; RENKINS, T.M.; NURSE, G.T. The red cell Glutaryl-

23. SIMOS, A.O. O polimorfismo de Estrase D em individuos sur-

