INTRODUCTION

Raman spectra of $\text{Cd}($NH$_3$)$_4$ (ReO$_4$)$_2$ and with 15N isotopic substitution were previously reported6. To date, the isotopic shifts in 110Cd/116Cd and H/D for the tetrammine-cadmium (II) perenate complex were not informed. The Raman spectrum of $\text{Zn}($NH$_3$)$_4$Cl$_2$, with 15N/15N$_2$, 64Zn/64Zn$_2$ and H/D isotopic substitutions has been published in3. In the Raman spectrum of $\text{Cd}($NH$_3$)$_4$ (ReO$_4$)$_2$ only one band pertaining to the cation complex was observed9. In the present work the ir. and Raman skeletal frequencies and isotopic shifts for the tetrammine-cadmium (II) perenate complex are reported.

EXPERIMENTAL

The method followed for the preparation of the cadmium tetrammine complexes correspond roughly to that one reported in the literature1,8. This method leads to a high yield of metal perhenates but is suited only for large quantities. To work with small quantities of the substances, the following procedures were adopted. Solutions of CdCl$_2$ were treated with stoichiometric quantities of solid AgReO$_4$ in suspension and gaseous ammonia was passed through the filtered solution of the above reaction products. The derived complexes were dried over KOH.

110CdCl$_2$ and 116CdCl$_2$ were obtained reacting 110Cd and 116Cd with HCl. In the synthesis of the labeled complexes, in each case 100ng of solid AgReO$_4$ and corresponding stoichiometric quantities of CdCl$_2$ were allowed to react in minimum possible volume of the solutions.

RESULTS AND DISCUSSION

The normal modes for the [MX$_2$]$_2^+$ framework (X=NH$_3$), in a Td symmetry can be represented by:

\[\gamma (T_d) = \sigma_v (R) + \sigma_g (R) + 2 \beta (1R,1R) \]

In the Raman spectra, in the 450 - 100 cm$^{-1}$ region, in addition to the anion band, two bands were observed (see Table I) which can be assigned to \(\nu_2 (\text{CdN}) \) (a$_2$) and \(\delta_2 (\text{NCdN}) \) (c), respectively.

Theoreticaly, the H/D skeletal isotopic shifts are expected to be observed for all the three symmetry species. In the (a$_2$) and (c) species, the analy-
tional expressions for the α matrix do not include the metal's ratio for the metal labeled complexes is equal to unity. The uncertainty in the determina-

d Table I: FRAMEWORK FREQUENCIES AND ISOTOPIC SHIFTS (cm$^{-1}$) FOR [Cd(NH$_3$)$_4$]$^{2+}$

<table>
<thead>
<tr>
<th>Species</th>
<th>ν_1 (s)</th>
<th>ν_2 (s)</th>
<th>δ_3 (NCdN)</th>
<th>ν_3 (s)</th>
<th>δ_4 (NCdN)</th>
<th>ν_4 (s)</th>
<th>δ_5 (NCdN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cd(NH$_3$)$_4$]$^{2+}$</td>
<td>387.0</td>
<td>162.5</td>
<td>0.5</td>
<td>372.0</td>
<td>0.5</td>
<td>167.5</td>
<td>0.5</td>
</tr>
<tr>
<td>[110Cd(NH$_3$)$_4$]$^{2+}$</td>
<td>387.0</td>
<td>162.5</td>
<td>0.5</td>
<td>372.0</td>
<td>0.5</td>
<td>167.5</td>
<td>0.5</td>
</tr>
<tr>
<td>[111Cd(NH$_3$)$_4$]$^{2+}$</td>
<td>360.0</td>
<td>146.0</td>
<td>0.5</td>
<td>348.0</td>
<td>0.5</td>
<td>155.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Isotopic shifts

<table>
<thead>
<tr>
<th>$\Delta \nu_1$</th>
<th>$\Delta \nu_2$</th>
<th>$\Delta \nu_3$</th>
<th>$\Delta \nu_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 (R)</td>
<td>0.0 (R)</td>
<td>0.0 (R)</td>
<td>0.0 (R)</td>
</tr>
<tr>
<td>27.0 (R)</td>
<td>2.0 (R)</td>
<td>16.5 (R)</td>
<td>23.0 (R)</td>
</tr>
</tbody>
</table>

H/D 27.0 2.0 (R) 16.5 2.0 (R) 12.5 2.3 (R)

RESUMO

ACKNOWLEDGEMENTS

The author thanks the DAAD (West Germany) for the award of a fellowship and to Prof. Dr. A. Müller (Universität Bielefeld, West Germany) for supplying 110Cd and 111Cd.

REFERENCES

