Alteration of babassu biodiesel properties through camphor and biodiesel of tung

Alteration of babassu biodiesel properties through camphor and biodiesel of tung

Authors

DOI:

https://doi.org/10.5433/1679-0375.2020v41n2p185

Keywords:

Blends, Biofuel, Natural additives, Freezing point, Viscosity

Abstract

Babassu oil is extracted from the babassu palm, one of the most important plants in the north and northeast Brazilian regions, and like many biofuels, it does not have adequate properties to be used as pure fuel, especially under low-temperature conditions. Therefore, researches to improve the physical-chemical properties of these biofuels are needed, one of the most common methods is using additives, usually synthetic ones, which are not environmentally friendly. A good alternative would be to try to found natural compounds with this potential. This paper describes the effects of the addition of two natural compounds, tung biodiesel, and camphor, in the physical properties of babassu biodiesel. These additives were select because of their physical-chemical properties, which can potentially improve the babassu biodiesel ones. They were tested separately, the camphor at the 3, 4, 5, 6 % proportions, and the tung biodiesel at 3, 5, 9, 12 %. The results were compared to biodiesel standards, limited by the Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP), and for both additives, the 3 % proportion showed the best suited to the quality standards established at the Brazilian normative. Thus, was observed that the camphor and the tung biodiesel has the potential to be efficient additives in babassu biodiesel

Metrics

Metrics Loading ...

Author Biographies

Camila Cassia Cordeiro, Universidade Estadual do Oeste do Paraná - UNIOESTE

Master's Student, Graduate Program in Chemical Engineering, UNIOESTE, Toledo, Paraná, Brazil

Julio Cezar Girardi, Universidade Estadual do Oeste do Paraná - UNIOESTE

PhD student, Graduate Program in Energy Engineering in Agriculture, UNIOESTE, Cascavel, Paraná, Brazil

Reinaldo Aparecido Bariccatti, Universidade Estadual do Oeste do Paraná - UNIOESTE

Professor of the Departments of Chemistry and Energy Engineering in Agriculture, UNIOESTE, Toledo, Paraná, Brazil

Douglas Cardoso Dragunski, Universidade Estadual do Oeste do Paraná - UNIOESTE

Professor of the Chemistry department, UNIOESTE, Toledo, Paraná, Brazil.

Camila Zeni do Amaral, Universidade Estadual do Oeste do Paraná - UNIOESTE

Master's Student of the Energy Engineering Course in Agriculture, UNIOESTE, Cascavel, PR, Brazil.

References

ABE, M.; HIRATA, S.; KOMATSU, H.; YAMAGIWA, K.; TAJIMA, H. Thermodynamic selection of effective additives to improve the cloud point of biodiesel fuels. Fuel, London, v. 171, p. 94–100, 2016.

ANP - AGÊNCIA NACIONAL DO PETRÓLEO GÁS NATURAL E BIOCOMBUSTÍVEIS. Resolução ANP no 45, de 25.8.2014. Rio de Janeiro: ANP, 2014. Available from: http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2014/agosto&item=ranp-45-2014. Acess in: 20/07/2020.

ALI, O. M.; MAMAT, R.; FAIZAL, C. K. M. Review of the effects of additives on biodiesel properties, performance, and emission features. Journal of Renewable and Sustainable Energy, Oxford, v. 5, n. 1, 2013.

ATMANLI, A. Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel, London, v. 176, p. 209–215, 2016.

BHARTI, R.; SINGH, B. Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, London, v. 262, p. 116658, 2020.

BORSATO, D.; CINI, J. R. D. M.; SILVA, H. C.; COPPO, R. L.; ANGILELLI, K. G.; MOREIRA, I.; MAIA, E. C. R. Oxidation kinetics of biodiesel from soybean mixed with synthetic antioxidants BHA, BHT and TBHQ: determination of activation energy. Fuel Processing Technology, London, v. 127, p. 111–116, 2014.

BUOSI, G. M.; SILVA, E. T. DA; SPACINO, K.; SILVA, L. R. C.; FERREIRA, B. A. D.; BORSATO, D. Oxidative stability of biodiesel from soybean oil: comparison between synthetic and natural antioxidants. Fuel, London, v. 181, p. 759–764, 2016.

CAMPESTRE. Óleo de Tungue: ficha técnica. São Bernardo do Campo: Campestre, 2020.

CAMPOS FILHO, V. M.; SPACINO, K. R.; ROMAGNOLI, É. S.; SILVA, L. R. C.; BORSATO, D. Perfil do biodiesel B100 comercializado na região de Londrina: aplicação de redes neurais do tipo mapa auto-organizável. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 36, n. 2, p. 63, 2015.

GONCA, G.; DOBRUCALI, E. Theoretical and experimental study on the performance of a diesel engine fueled with diesel-biodiesel blends. Renewable Energy, Oxford, v. 93, p. 658–666, 2016.
GÜLÜM, M; BILGIN, A. Density, flash point and heating value variations of corn oil biodiesel-diesel fuel blends. Fuel, London, v. 134, p. 456–464, 2015.

KANAVELI, I. P.; ATZEMI, M.; LOIS, E. Predicting the viscosity of diesel/biodiesel blends. Fuel, London, v. 199, p. 248–263, 2017.
KNOTHE, G; RAZON, L. F. Biodiesel fuels progress in energy and combustion science. Progress in Energy and Combustion Science, Oxford, v. 58, p. 36-59, 2017.

KUMAR, A.; SUBRAMANIAN, K. A. Control of greenhouse gas emissions (CO2, CH4 and N2O) of a biodiesel (B100) fueled automotive diesel engine using increased compression ratio. Applied Thermal Engineering, Oxford v. 127, p. 95–105, 2017.

MAGRO, F. G.; DECESARO, A.; BERTICELLI, R.; COLLA, L. M. Produção de bioetanol utilizando microalgas: uma revisão. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 37, n. 1, p. 159, 2016.

MAIA, E. C. R.; BORSATO, D.; MOREIRA, I.; SPACINO, K. R.; RODRIGUES, P. R. P.; GALLINA, A. L. Study of the biodiesel B100 oxidative stability in mixture with antioxidants. Fuel, London, v. 92, n. 9, p. 1750–1755, 2011.

MAZIVILA, S.; SANTANA, F. B.; MITSUTAKE, H.; GONTIJO, L. C.; SANTOS, D. Q.; BORGES NETO, W. Discrimination of the type of biodiesel/diesel blend (B5) using mid-infrared spectroscopy and PLS-DA. Fuel, London, v. 142, p. 222–226, 2015.

MONIRUL, I. M.; KALAM, M. A.; MASJUKI, H. H.; ZULKIFLI, N. W. M.; SHAHIR, S. A.; MOSAROF, M. H.; RUHUL, A. M. Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions. Renewable Energy, Oxford, v. 101, p. 702–712, 2017.

MUMTAZ, M. W.; ADNAN, A.; ANWAR, F.; MUKHTAR, H.; RAZA, M. A.; AHMAD, F.; RASHID, U. Response surface methodology: an emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies, Basel, v. 5, n. 9, p. 3307–3328, 2012.

OLIVEIRA, L. E.; GIORDANI, D. S.; PAIVA, E. M.; CASTRO, H. F. DE; SILVA, M. L. C. P. Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TG). Journal of Thermal Analysis and Calorimetry, Dordrecht, v. 111, n. 1, p. 155–160, 2013.

PARK, J. Y.; KIM, D. K.; WANG, Z. M.; LU, P.; PARK, S. C.; LEE, J. S. Production and characterization of biodiesel from tung oil. Applied Biochemistry and Biotechnology, Clifton, v. 148, n. 1/3, p. 109–117, 2008.

RIZWANUL FATTAH, I. M.; MASJUKI, H. H.; KALAM, M. A.; MOFIJUR, M.; ABEDIN, M. J. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Conversion and Management, Amsterdam, v. 79, p. 265–272, 2014.

ROMAGNOLI, É. S.; BORSATO, D.; SILVA, L. R. C.; CHENDYNSKI, L. T.; ANGILELLI, K. G.; CANESIN, E. A. Kinetic parameters of the oxidation reaction of commercial biodiesel with natural antioxidant additives. Industrial Crops and Products, Amsterdam, v. 125, p. 59–64, 2018.

RUHUL, M. A.; ABEDIN, M. J.; RAHMAN, S. M. A.; MASJUKI, B. H. H.; ALABDULKAREM, A.; KALAM, M. A.; SHANCITA, I. Impact of fatty acid composition and physicochemical properties of Jatropha and Alexandrian laurel biodiesel blends: an analysis of performance and emission characteristics. Journal of Cleaner Production, Oxford, v. 133, p. 1181–1189, 2016.

SANTOS, N. A.; TAVARES, M. L. A.; ROSENHAIM, R.; SILVA, F. C.; FERNANDES, V. J.; SANTOS, I. M. G.; SOUZA, A. G. Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. Journal of Thermal Analysis and Calorimetry, Dordrecht, v. 87, n. 3, p. 649–652, 2007.

SECCO, W.; SILVA, C. DA; AWADALLAK, J.; SILVA, E. A. DA. Transesterificação do Óleo de Frango Empregando Diferentes Catalisadores. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 38, n. 1, p. 3, 2017.

SENRA, M.; MCCARTNEY, S. N.; SOH, L. The effect of bio-derived additives on fatty acid methyl esters for improved biodiesel cold flow properties. Fuel, London, v. 242, p. 719–727, 2019.

SILVA, F. C.; CAVALCANTE, K. S. B.; LOUZEIRO, H. C.; MOURA, K. R. M., MACIEL, A. P.; SOLEDADE, L. E. B.; SOUZA, A. G. Production of biodiesel from babassu oil using methanol-ethanol blends. Ecletica Quimica, São Paulo, v. 35, n. 1, p. 47–54, 2010

VALENGA, M. G. P.; BOSCHEN, N. L.; RODRIGUES, P. R. P.; MAIA, G. A. R. Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Industrial Crops and Products, Amsterdam, v. 128, p. 331–337, 2019.

VARATHARAJAN, K.; PUSHPARANI, D. S. Screening of antioxidant additives for biodiesel fuels. Renewable and Sustainable Energy Reviews, London, v. 82, p. 2017–2028, 2018.

XUE, Y.; ZHAO, Z.; XU, G.; LIAN, X.; YANG, C.; ZHAO, W.; MA, P.; LIN, H.; HAN, S. Effect of polyalpha-olefin pour point depressant on cold flow properties of waste cooking oil biodiesel blends. Fuel, London, v. 184, p. 110–117, 2016.

YUAN, M. H.; CHEN, Y. H.; CHEN, J. H.; LUO, Y. M. Dependence of cold filter plugging point on saturated fatty acid profile of biodiesel blends derived from different feedstocks. Fuel, London, v. 195, p. 59–68, 2017.

Downloads

Published

2020-12-11

How to Cite

Cordeiro, C. C., Girardi, J. C., Bariccatti, R. A., Dragunski, D. C., & Zeni do Amaral, C. (2020). Alteration of babassu biodiesel properties through camphor and biodiesel of tung. Semina: Ciências Exatas E Tecnológicas, 41(2), 185–194. https://doi.org/10.5433/1679-0375.2020v41n2p185

Issue

Section

Original Article

Most read articles by the same author(s)

Loading...