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Solitons in ideal optical fibers: a numerical development

Sólitons em fibras óticas ideais: um desenvolvimento 
numérico
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Resumo

This work developed a numerical procedure for a system of partial differential equations (PDEs) 
describing the propagation of solitons in ideal optical fibers. The validation of the procedure was 
implemented from the numerical comparison between the known analytical solutions of the PDEs 
system and those obtained by using the numerical procedure developed. It was discovered that the 
procedure, based on the finite difference method and relaxation Gauss-Seidel method, was adequate in 
describing the propagation of soliton waves in ideals optical fibers.
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Abstract

Este trabalho desenvolveu um procedimento numérico para um sistema de equações diferenciais parciais 
(EDP’s) que descreve a propagação de sólitons em fibras óticas ideais. A validação do procedimento 
foi implementada a partir da comparação numérica entre as soluções analíticas conhecidas do sistema 
de EDP’s e aquelas obtidas por meio do procedimento numérico desenvolvido. Verificou-se que o 
procedimento, baseado no método das diferenças finitas e no método de Gauss-Seidel com relaxação, 
mostrou-se adequado na descrição da propagação das ondas sólitons em fibras óticas ideais.
Palavras-chave: Comunicação ótica. Sólitons. Diferenças finitas. Método de Gauss-Seidel com 
relaxação.
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Introduction

In the last decades, several experiments were 
carried out aiming at trying to improve the capacities 
of the optical communication systems. The 
important issue is how to compensate the dispersion 
and the nonlinearities in communication systems at 
long distances (thousands of kilometers) or in high 
debt ground systems. A good technique that allows 
simultaneous compensation of such effects had 
already been proposed by Hasegawa and Tappert 
(1973), though only after the appearance of the optical 
amplifier could it be applied to practical systems 
(HASEGAWA; TAPPERT, 1973). This technique is 
based on the use of optical pulses, whose electrical 
field has the shape of a hyperbolic secant with some 
milliwatts of peak potency, and in the compensation 
of the dispersion by the optical fiber nonlinearities. 
Such pulses, called solitons, are capable of self-
propagation, keeping their shape unchanged in a 
dispersive and non-linear environment, like the 
optical fiber. (EILENBERGER, 1981; TAYLOR, 
1992).

In the 1980’s, the experimental development of 
communication systems based on optical solitons 
started. Mollenauer, Stolen and Gordon (1980), 
conducted the first experimental observation of 
the bright soliton propagation in optical fibers. 
Hasegawa (1984), proposed that optical solitons 
could be used in long distance communication 
without the need of repeating stations, including 
overseas communications (HASEGAWA, 
1984; PILIPETSKII, 2006). Since then, several 
experiments were conducted with the objective of 
improving the transmission capacity of solitons in 
optical fibers. Emplit et al. (1987), carried out the 
first experimental observation of the dark soliton 
propagation in optical fibers (EMPLIT et al., 1987). 
Mollenauer and Smith (1988), transmitted soliton 
pulses over 4,000 kilometers using a phenomenon 
called the Raman Effect to provide optical gain 
in the fiber (MOLLENAUER; SMITH, 1988). In 
1991, a Bell Labs research team transmitted bright 
solitons error-free at 2.5 gigabits per second, over 

more than 14,000 kilometers, using erbium optical 
fiber amplifiers (MOLLENAUER et al., 1991). 
In 1998, Thierry Georges and his team at France 
Telecom, combining optical solitons of different 
wavelengths, demonstrated data transmission of 1 
terabit per second (LE GUEN et al., 1999). In 2000, 
the practical use of  solitons turned into reality 
when Algety Telecom, then located in Lannion, 
France, developed undersea telecommunication 
equipments for the transmission of optical solitons. 
In this time, intense research was also conducted 
on the possibility of using vector soliton in optical 
communications. The use of vector solitons in 
a birefringence fiber was predicted by Menyuk 
(1987a, 1987b) and observed recently (ZHANG et 
al., 2008; TANG et al., 2008).

In this context of optical communication via 
solitons, an increase in the number of published 
works, with the aim of overcoming the several 
problems that have been found and improving the 
already proposed methods has been verified. Such 
theoretical and experimental studies approach 
themes related to the soliton generation processes 
(MALOMED et al., 2005; KUROKAWA; TAJIMA; 
NAKAJIMA, 2007), soliton propagation processes 
(HASEGAWA, 2000; LATAS; FERREIRA, 
2007; TSARAF; MALOMED, 2009) and soliton 
stability processes (CHEN; ATAI, 1998, DRIBEN; 
MALOMED, 2007) in optical fibers.

In this work, only the results about scalar bright 
solitons, named simply as solitons from now on, will 
be discussed. The study of propagation and stability 
of femtosecond optical solitons in fibers is affected 
by several disturbing processes. Usually, the most 
important ones are group velocity dispersion and 
optical Kerr effect (intensity dependence of the 
refractive index). Taking only these into account, 
the pulse propagation is a soliton described by a 
system of coupled nonlinear Schrödinger differential 
equations (HASEGAWA; TAPERT, 1973).

To describe real-world fiber-optic system, it is 
more realistic to include further effects like power 
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loss or Rayleigh scattering (BÖHM; MITSCHKE, 
2007), high-order dispersion and high-order 
nonlinearities (AGRAWAL, 1995), soliton self-
steepening, Raman effect and self-frequency shift 
(LATAS; FERREIRA, 2007), polarization-mode 
dispersion (DRIBEN; MALOMED, 2007), nonlinear 
phase noise (LAU; KAHN, 2007), defects or 
mends in the optical fiber (TSARAF; MALOMED, 
2009), among others. It should be observed that 
the perturbed coupled nonlinear Schrödinger 
differential equations systems, that describe wave 
propagation in real optical fibers, do not present 
analytical solution known in the literature.

In this work, aiming to study the propagation and 
the stability of such waves, called quasi-solitons, 
in real optical fibers, firstly a general numerical 
procedure is developed for the propagation of 
solitons in ideal optical fibers. It should be noted 
that, in the case of ideal fibers, the analytical solution 
of the problem is known, and this will allow the 
validation of the numerical procedure. 

In the literature there are several numerical 
approaches whose objective is to describe the 
propagation of solitons in dielectrical environments, 
most of which use the finite difference method 
(ISMAIL, 2004; WANG, 2005; CHEN, 
MALOMED, 2009), the finite element method 
(DAG, 1999; ISMAIL, 2008) and the split-step 
method (LIU, 2009). On the other hand, to solve 
numerically the resulting system of equations, 
the authors use various methods like Newton’s 
method (ISMAIL, 2008), Crank-Nicolson method 
(CHEN; MALOMED, 2009), Runge-Kutta Method 
(REICH, 2000), among others. A review of the 
several numerical procedures applied to describe 
the propagation of solitons in optical fibers is found 
in Dehghan and Taleei (2010).

In this paper, to describe the propagation of 
solitons waves in ideal optical fibers, a procedure 
based on the finite difference method and relaxation 
Gauss-Seidel method is used. Section 2 presents 
the soliton analytical solutions for the coupled 

nonlinear Schrödinger differential equations system 
that describes the propagation of waves in ideal 
optical fibers. In the sequence, the characteristics of 
the soliton wave are correlated with the dielectrical 
properties of the ideal optical fibers. In Section 3, 
a numerical procedure for this ideal PDE system is 
developed. In Section 4, by comparing the obtained 
numerical results with the known analytical 
results, the consistency of the developed numerical 
procedure is verified. In Section 5, the main results 
of this work are presented.

Solitons in         dielectric fibers

This section studies the coupled non-linear 
complex PDE system, obtained from Maxwell’s 
equations, which describe the longitudinal 
propagation of two electromagnetic waves 
(fundamental and second harmonic modes) in 

 

( )2χ    
dielectrical optical fibers (AGRAWAL, 1995). The 
detailed mathematical modeling of this PDE system 
can be found in Galleas et al. (2003). This coupled 
nonlinear differential equations system is given by
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1−=I   is the imaginary unit,  ),(1 sa ξ  
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the normalized amplitudes of the electrical fields 
of the fundamental and second harmonic waves, 
respectively, with  
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complex conjugates. The independent variable 

 s  has spatial dimension character, whereas the 
independent variable  ξ  has temporal character.

The real parameters  α, β,  δ  and   r , in (1), are 
related with the dielectrical properties of the optical 
fiber and should be adjusted so that the existence 
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of solutions is possible (YMAI et al., 2004). In the 
limit 

 
∞→β , the coupled differential equations 

(1) uncouple in Schrödinger’s non-linear equation 
(MENYUK; SCHIEK; TORNER, 1994). Thus, the  
β quantity is a measure of the generation rate of 
the second harmonic. The α quantity measures the 
relative dispersion of the group velocity dispersion 
(GVD) of fundamental and second harmonic waves 
in the optical fiber. For values  

 
1>α , the second 

harmonic wave has higher dispersion than the 

fundamental wave and for values  1<α , it is the 
fundamental wave that has higher dispersion. The   r  
quantity is the signal of the fundamental GVD wave. 
When   1+=r , the fundamental wave is in normal 
dispersion regime, but if   1−=r , the fundamental 
wave is in the anomalous dispersion regime. Finally, 
the parameter   δ  measures the difference of group 
velocities of fundamental and second harmonic 
waves, so it accounts for the presence of Poynting 
vector walk-off that occurs in birefringent media, 
when propagation is not along the crystal optical axes. 
Notice that it is possible to choose the characteristics 
(velocity, width, amplitude, stability, etc.) of the 
wave to be propagated in the optical fiber, selecting 
or proposing materials with the appropriate  α,  β, 

 δ   and  r  dielectrical properties. In (GALLEAS et 
al., 2003) a detailed description of the interpretation 
of such dielectrical quantities is given, relating them 
with the fiber optical properties.

The PDE system (1) presents solitons solutions 
(GALLEAS et al., 2003), given by
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In (QUEIROZ et al., 2006), a adapted numerical 
procedure provided the numerical solution of (1), 
when   0=δ . In the specific case of the propagation 
of solitons in special optical fibers, and in optimal 
situations, the walk-off wave phenomenon can be 
disregarded (ARTIGAS; TORNER; AKHMEDIEV, 
1999), which justifies taking   0=δ  in such 
situations. However, in the case of non-ideal optical 
fibers, situation in which necessarily  0≠δ , a general 
numerical procedure to the system (1) should be 
developed. This numerical development is presented 
in the next section.

Numerical model for the propagation of 
solitons in optical fibers

The numerical scheme developed in this work to 
solve the PDEs system (1), consists in approximating 
the derivates by finite differences and resolving the 
algebraic system resulting from the discretization, 
implicitly, by means of the relaxation Gauss-Seidel 
method (SMITH, 1990; SPERANDIO, MENDES, 
MONKEN, 2003).

 

Figure 1 - Computational domain of the propagation of 
the soliton waves.
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System (1) is numerically resolved in 
domain [ ] [ ]LLTs ,,0 −×=×ξ , where ℜ∈LT , . 
By discretizing the variables ( ) ( )ikasa ,1, 11 +≡ξ  
and ( ) ( )ikasa ,1, 22 +≡ξ , for max,...,1,0 kk = and  

nii ,...,2,1= , where maxk is denominated the last 
advance in ξ  and   ni  the maximum number 
of points in  s , the propagation domain of the 
solitons wave becomes defined by a discretized 
computational network of nik ×max  points, as 
represented in Figure 1.

Thus, by means of the method of finite 
differences, approaching the temporal derivates by 
progressive differences, and the spatial derivates by 
central differences (SMITH, 1990), the following 
linear systems are generated from the differential 
equations (1), namely,
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In this work, the linear system (4) is resolved 
by means of the relaxation Gauss-Seidel method 
(SPERANDIO, MENDES, MONKEN, 2003). 
Consider this linear system for ( )ika ,11 +  , given 
explicitly by
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until the stop criterion is fulfilled, namely,

where
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Figure 2 - Flowchart of the numerical code developed 
                  to obtain the numerical solitons solutions.

advantage of not requiring the simultaneous storage 
of the vectors  

 
( ) )(

1 1,1 nika ++ and  
 
( ) )1(

1 1,1 +−+ nika at 
each step. Likewise, 

 
( ) )1(

2 ,1 ++ nika  is resolved.

Notice that, in equations (5)-(6), the value   

 0.1=ω  was used for the parameter of relaxation 
(CIRILO et al., 2008). Such value corresponds to 
the optimal relaxation parameter in relation to the 
variations of the dielectrical parameters  α, β and  δ    
of system (1). Figure 2 presents the flowchart of the 
numerical code developed for the PDEs system (1).
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Numerical results

This section analyses the numerical code 
developed in the previous section, comparing 
the obtained numerical result with the known 
analytical result (2-3), in function of the dielectrical 
parameters,  and   of the studied model. 

In the simulations, a CPU with processor AMD 
Athlon 64X2 Dual Core Processor 4400+, with 2.29 
GHz and 1.00 GB of RAM memory is used. In the 
calculations a tolerance factor of  6100.1 −×  was 
imposed.  The code was developed in FORTRAN.

For the simulations the values  1−=r , 21−=β  
41−=α  and 2121 <δ<−  were adopted. 

Such values are compatible with experimental 
measurements observed in commercial optical 
fibers.

Initially   0=δ  is considered. When  50=L  
and  10=T , from a discretization of 500 points in 
interval  ],[ LL−  and of 

 

2100.1 −×=ξ∆ , a significant 
agreement is verified between the numerical and the 
analytical solutions, as observed in Figures 3 and 4. 
For all the computational domain, it was obtained 
that the biggest difference between the analytical and 
numerical solutions, for the fundamental harmonic, 
was 3105.1 −× . Likewise, the maximum numerical 
error for the second harmonic was 3107.2 −× . The 
total processing time was  1105.1 −×  seconds.

 Figure 3 - Analytical and numerical solutions 
                 of  

 
( )sa ,1 ξ , in  10=ξ  , for  0=δ  .

 
 

Figure 4 - Analytical and numerical solutions 
                 of 

 
( )sa ,2 ξ  , in 

 
10=ξ , for  0=δ  .

The profile of the fundamental harmonic module, 
numerically obtained, is presented in Figure 5. 
From an upper view of plan s×ξ  , see Figure 6, it 
is observed that the soliton remains static in  0=s  
, for all ξ . Likewise, the profile of the second 
harmonic module, also numerically obtained, can 
be observed in Figure 7, whose upper view is shown 
in Figure 8. These numerical results are consistent 
with the analytical results foreseen by (GALLEAS 
et al., 2003; YMAI et al., 2004).

 
 

Figure 5 - Numerical solution of  

 
( )sa ,1 ξ , in all 

computational domain, for  0=δ  .

,
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Figure 6 - Upper view of  

 
( )sa ,1 ξ  for  0=δ .

 
 

Figure 7 - Numerical solution of  

 
( )sa ,2 ξ , in

                all computational domain, for  0=δ  .

Now the situation  0≠δ   is considered. Taking 
41−=δ  and the same partition of 500 points 

in interval   ],[ LL−  and 
 

2100.1 −×=ξ∆  , the 
propagation of the soliton wave along the fiber is 
analyzed when    50=L  and  10=T . The simulations 
conducted showed that the biggest difference 
between the analytical and numerical solutions, 
for the fundamental harmonic, was 

3101.7 −× . 
Likewise, for the second harmonic, the maximum 
error was 3105.7 −×  . The total processing time was  

1104.1 −×  seconds. Again, a relevant agreement is 
observed between these solutions, as observed in 
Figures 9 and 10.

 
Figure 8 - Upper view of  

 
( )sa ,2 ξ  for  0=δ  .

Notice that the maximum errors between the 
numerical and analytical solutions for  41−=δ  
were slightly superior to the ones obtained for  0=δ
. This fact is due to the term 

s
a
∂
∂

δ 2  in (1), which is 
taken into account in the numerical calculations 
when  0≠δ  . In other words, the presence of this 
term in the numerical procedure generates new 
errors, due to the approximations, which propagate 
along the computational domain, incrementing 
the maximum x’errors between the numerical and 
analytical solutions.

 
 

Figure 9 - Analytical and numerical solutions 
                  for 

 
( )sa ,1 ξ , in  10=ξ , for 41−=δ .
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Figure 10 - Analytical and numerical solutions 
                   for  

 
( )sa ,2 ξ , in 10=ξ , for 41−=δ .

Figures 11 and 13 present the profiles of the 
fundamental harmonic and second harmonic 
modules, respectively, obtained  numerically in 
all the computational domain, when  . Figures 12 
and 14 present the upper view of the propagation 
of such waves along the computational domain. 
In accordance with the analytical results (YMAI 
et al., 2004), from Figures 9 and 10, and from the 
upper views of the numerical solutions in all the 
computational domain, presented in figures 12 
and 14, it is verified that the solitons waves, when  

0≠δ propagate in the spatial dimension  .

 
 

Figure 11 - Numerical solution of 

 
( )sa ,1 ξ , in 

                   all computational domain, for 41−=δ . 

 
 

Figure 12 - Upper view of  

 
( )sa ,1 ξ  for  41−=δ .

Notice that, in the analytical solutions (2-3), the 
velocity propagation   of the solitons waves, in  , is 
given by

r
rvvts

r
rs

−α
δ

=⇒−=





 ξ

−α
δ

−
22

 ,     (7) 

 
 

Figure 13 - Numerical solution for 

 
( )sa ,2 ξ , in 

                  all computational domain, for 41−=δ .

where it is explicitly observed the dependence of   

 v  on  δ  . In the considered case, 041 <−=δ , with 

 1−=r , 21−=β , 41−=α , it is noticed that the 
soliton progressed in the positive direction of   s   as 
expected.
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Figure 14 - Upper view of  

 
( )sa ,2 ξ  for  41−=δ .

Conclusions

The numerical scheme developed in this work, 
based on the finite difference method, was shown 
to be relatively simple from the computational-
mathematical point of view, and adequate for the 
obtention of the numerical solitons solutions in 
ideal optical fibers.

It is the intention of the following works to 
describe the behavior of the quasi-soliton waves 
in non-ideal fibers, as well as to describe how the 
propagation and the stability of the soliton waves 
are affected when perturbatives processes are 
considered in the PDEs studied by Ymai et al. 
(2004). It should be observed that, at this level, 
analytical solutions are not known, so that the 
theoretical studies should be conducted by means 
of numerical procedures. As possible perturbatives 
processes that affect the propagation of solitons in 
dielectrical fibers, the following are mentioned:

1. absorptions of several types due to 
inhomogeneities, molecules of hydrogen and 
bubbles in the fiber (RAGHAVAN; AGRAWAL, 
2000; BÖHM; MITSCHKE, 2007);

2. defects in the manufacture of the optical 
fiber like variations in the fiber diameter, rugosity, 
sinuosity in the longitudinal axis, micro curvatures 

and mends in the link by fusion with arc light 
(STROBEL, 2004; TSARAF; MALOMED, 2009);

3. noises in the electrical fields of the waves, 
for example, by the soliton pumping process, with 
the aim of compensating the absorption of the 
optical fiber (WERNER; DRUMMOND, 1993; 
LAU; KAHN, 2007);

4. high-order dispersion and high-order 
nonlinearities (AGRAWAL, 1995);

5. Raman effect and self-frequency shift 
(LATAS; FERREIRA, 2007);

6. polarization-mode dispersion (DRIBEN; 
MALOMED, 2007); among other disturbing 
processes.

In this context, the numerical procedure 
developed and validated in this work is intended to 
be used to approach the issue of propagation and 
stability of solitons in non-ideal optical fibers.
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