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Abstract
The experimental statistic uses multiple comparison procedures (MCP) to verify if there is a difference
between the treatments under analysis. However, the presence of unbalanced data and the cases of hetero-
geneity of variance negatively influence the performance of the most used tests. The dbayes and pbayes tests
were previously implemented in the context of completely randomized designs by one of the authors. These
tests are valid for cases where assumptions of variance analysis are met or not, with or without balancing.
The objective of this article is to optimize the Bayes function, in R code, that allows the performance of
these tests. To validate the optimization, it compared the optimized code with the previous code and used
three real situations: one considering all the assumptions, the other two with unbalanced data and with
different numbers of treatments. The optimized Bayes function allows the dbayes and pbayes tests to perform
well under conditions of assumption and balancing. These tests can be used satisfactorily in situations of
non-compliance with the assumptions. In cases of unbalanced data, with a small number of treatments, the
dbayes test presents a result superior to the Tukey-Kramer test.
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Resumo
A estatística experimental utiliza procedimentos de comparações múltiplas (PCM) a fim de verificar se
há diferença entre os tratamentos em análise. Entretanto, a presença de dados desbalanceados e casos
de heterogeneidade de variâncias influencia negativamente o desempenho dos testes mais utilizados. Os
testes dbayes e pbayes foram implementados anteriormente no contexto dos delineamentos inteiramente
casualizados por um dos autores. Esses testes são válidos para casos em que as pressuposições da análise de
variância são atendidas ou não, com ou sem balanceamento. O presente artigo tem por objetivo realizar uma
otimização da função Bayes, em código R, que permite a realização destes testes. Para validar a otimização,
comparou-se o código otimizado com o código anterior e utilizou três situações reais: uma atendendo a
todas as pressuposições, as outras duas com dados desbalanceados e com número diferente de tratamentos.
A função Bayes otimizada propicia que os testes dbayes e pbayes tenham bons resultados em condições de
atendimento das pressuposições e balanceamento. Estes testes podem ser utilizados satisfatoriamente nas
situações de não atendimento das pressuposições. Nos casos de dados desbalanceados, com um pequeno
número de tratamentos, o teste dbayes apresenta resultado superior ao teste de Tukey-Kramer.

Palavras-chave: Testes Bayesianos. PCM. Análise de variância. Delineamento completamente aleatorizado.
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Introduction

Experimental Statistics is a daily need of researchers
from several areas of knowledge; it is used as an aux-
iliary tool in decision making. Due this necessity, sev-
eral methods have been established and incorporated by
researchers and practitioners in their work and among
these methods, there is the multiple comparison tests, that
compare the means of the treatments of interest to deter-
mine which of these treatments differ from one another
(RAFTER; ABELL; BRASELTON, 2002).

Analysis of variance (ANOVA) was the first method
for the analysis of experimental data. It was developed
by Ronald Fisher from the 1920 (FISHER, 1973). The F
test compares the means in the analysis of variance, but
does not designate which means differ from one another.
Therefore, multiple comparison procedures (MCP) are
used to identify these differences. These are valid when
the F test is significant, the nature of the treatments is qual-
itative and there are more than two treatments, indicating
whether or not there is a difference between the treatments.
(BRETZ; HOTHORN; WESTFALL, 2010; HOCHBERG;
TAMHANE, 1987; HSU, 1996).

Thus, all pairs comparisons of the means of the treat-
ments are performed by the MCPs that analyze the dif-
ferences between the means after the conclusion of the
experiment (BRETZ; HOTHORN; WESTFALL, 2010;
HINKELMANN; KEMPTHORNE, 1987; HOCHBERG;
TAMHANE, 1987; HSU, 1996). However, it is difficult
to choose which MCP to use, since their performance
varies in relation to the type I and power error rates
(DEMIRHAN et al., 2010).

The use of the F-test depends on the verification of
four assumptions to be valid. These assumptions or funda-
mental assumptions of the analysis of variance are: addi-
tivity of the effects allowed in the model, independence,
homogeneity of variances and normality of the residues
(RAFTER; ABELL; BRASELTON, 2002). If at least one
of these hypotheses is not satisfied, the analysis of vari-
ance has no validity as a statistical analysis technique
and becomes a simple mathematical treatment of the data
collected.

However, first two assumptions are less likely to be vi-
olated because they are under the control of the researcher.
If violated, neither the MCP nor the F-test is robust. Most
MCPs appears to be robust at moderate distances from
normality, as the error rate per experiment will be only
slightly higher than that specified (ANDRADE; ROCHA;
SILVA, 2017).

In addition, violation of the hypothesis of homogene-
ity of variances can affect the performance of the method
and compromise the results in different ways. Several
studies have been carried out (DUNNETT, 1980; GAME;
HOWELL, 1976; TAMHANE, 1977). It is known that
heteroscedasticity can affect the inference and may have a
direct impact on the conclusions. The presence of variance
heterogeneity may also have a serious effect on the valid-
ity of the F-test, especially when the sizes of these sam-
ples are unbalanced (CHEN; LEE, 2011; DEMIRHAN
et al., 2010; KEYES; LEVY, 1997; LI, 2012; O’BRIEN,
1978; RAMSEY; RAMSEY; BARRERA, 2010; RAM-
SEY; BARRERA; HACHIMINE-SEMPREBOM, 2011;
SARMAH; GOGOI, 2015; SHINGALA; RAJYAGURU,
2015; TAMHANE, 1979). Furthermore, an alternative is
the use of Bayesian procedures to make multiple compar-
isons (ANDRADE; FERREIRA, 2010; BERRY, 1988;
BERRY; HOCHBERG, 1999; BRATCHER; HAMIL-
TON, 2005; DUNCAN, 1965; GELMAN; HILL; YA-
JIMA, 2012; GOPALAN; BERRY, 1998; SHAFFER,
1999; WALLER; DUNCAN, 1969).

Andrade, Rocha and Silva (2017) implemented two
Bayesian alternatives for multiple comparisons proposed
by Andrade and Ferreira (2010), in the context of com-
pletely randomized designs using software R (R DEVEL-
OPMENT CORE TEAM, 2019). The methodology was
based on the a posteriori multivariate t distribution, con-
templating the possibility of analyzing cases, homogeneity
and heterogeneity of variances, with and without balanc-
ing.

The objective of the paper is to optimize the Bayes
function in order to obtain more reliable results, to extend
the tests dbayes and pbayes for unbalanced data and to
improve the man-machine interaction. Also, to compare
the optimized function with the previous one and validate
the same with real examples in different situations.

Methods

Firstly, to optimize the Bayes function, it was neces-
sary to understand the programming logic of this function
implemented by Andrade, Rocha and Silva (2017) and
the theoretical study carried out by Andrade and Ferreira
(2010). The Bayes function was programmed in R code in
the context of completely randomized design (CRD). This
function is composed of three arguments: sample size to
be simulated (N), level of significance (alpha) and data
set to be analysed (file).
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The Bayes function is able to test the normality and the
additivity of the residues, the homogeneity of variances,
performs the analysis of variance and allows and the com-
parison of average of qualitative treatments. The averages
can be differentiated by the tests of multiple comparisons
dbayes and pbayes (ANDRADE; ROCHA; SILVA, 2017).

For this, a sample of size n of the multivariate t distri-
bution is generated. The Monte Carlo method is used to
generate k chains of means based on the distribution a pos-
teriori t multivariate. Later, the a posteriori distribution of
the means is obtained through the generation of the stand-
ardized amplitude a posteriori, under H0 (ANDRADE;
FERREIRA, 2010). Subsequently, used a Kernel density
estimator of the R program to obtain densities a posteriori

of the standardized amplitude distribution q and the upper
quantile α percentage of that distribution.

According to Andrade and Ferreira (2010), to make
the inference about the null hypothesis, considering all
pairs, it is necessary to perform the calculation given by
equation (1)

∆ = σh.qα , (1)

in which qα is the upper quantile 100qα % of the poste-
rior distribution of q and σh was obtained according to
equation (2)

σh =
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The equation (2) allows analyzing cases with different
repetitions numbers and variances.

The dbayes test calculates the difference between the
pairs of means with the ∆ (least significant difference).
The hypothesis H0 : µi = µi′ is rejected when the modu-
lus of the difference between the pairs is greater than ∆

(ANDRADE; FERREIRA, 2010).
The pbayes test calculates probability a posteriori of

the intervals containing the value zero. These intervals
were obtained using the lower (LIii′) and upper (LSii′)
limits of an interval a posteriori for each pair of means
(µi,µi′ ), as shown in equation (3)LIii′ = µi j−µi′ j−q jσh

LSii′ = µi j−µi′ j +q jσh.
(3)

Treatments are considered equal if zero is contained
within this range, otherwise they are considered as dif-
ferent.

Due to the previously described study it was noted that
the Bayes function did not perform the dbayes and pbayes

tests for the unbalanced data case. In order to so, it was
necessary to expand the parameters of the qpostbayes

(N,Y b,Syb,nu) function and tposmult (N,Y b,Syb,nu).
According to Andrade and Ferreira (2010) the most im-
portant parameters related to the presence or not of the
missing data are Y b and Syb. The parameter Y b is a vector
whose inputs are the averages of each treatment. When
there is different number of repetitions the calculation of
each mean differs according to the quantity of plots of
each treatment, as shown in equation (4):

n

∑
i=1

di

ni
, (4)

where in di means the treatment data i and ni the number
of the treatment repeat i.

The parameter Syb is a diagonal matrix. This matrix
stores the values of the mean square of the error divided
by the number of repetitions of each treatment, denoted
by equation (5)
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The number of repetitions of each treatment is stored in
a vector (nrt), which it is used to calculate the parameters
Y b and Syb. Another parameter that modifies its value
with the presence of missing data is the degree of freedom
of the residues (nu).

In addition, it was observed that the Bayes function use
several packages, which made it difficult for inexperienced
users to interact with the function. Furthermore, the results
of the tables show by the Bayes function are confusing
and misaligned. Therefore, optimizations were needed in
these aspects.

Finally, comparing the results of Andrade and
Ferreira (2010) and those of the Bayes function,
differences were observed in the results. These differences
occurred because of the divergent calculus of the delta,
equation (1), and the pbayes test regarding to the theory.
Therefore, it was necessary to change the programming
of both.

The optimization performed in the Bayes function was
performed in steps: introduction of the method of load-
ing and/or installing packages; enhancement of the delta
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calculation and determination of the pbayes test limits;
insertion of the code that allows the use of unbalanced
data and organization of the outputs of the tables in R.
The optimization allows performing the tests with greater
precision.

Then the optimized code was compared to the code
implemented by Andrade, Rocha and Silva (2017). In
this case, a dataset of a CRD experiment with red clover
plants was used: five treatments of different cultures of
five nitrogen-fixing bacteria, the data were adapted from
Steel and Torrie (1980). The variations are heterogeneous,
that is, not all assumptions have been met.

The performance of the optimized code was illustrated
in different situations, three experiments were used. The
first deals with blood clotting time taken from 24 ani-
mals randomly allocated to four diets (BOX; HUNTER;
HUNTER, 2005). This study meets all the assumptions
required by the analysis of variance, allowing the compar-
ison of the dbayes and pbayes tests with the traditional
tests: Tukey (TUKEY, 1949), Scott-Knott (SK) (SCOTT;
KNOTT, 1974) and Calinski and Corsten (CCF) (CALIN-
SKI; CORSTEN, 1985).

Additionally, the second and third situations present
unbalanced data, contemplating numbers of different treat-
ments. The results were compared using the Tukey-Kramer

test (KRAMER, 1956). The second experiment compares
different blankets used to warm patients after a surgical
procedure (WESTFALL; RANDALL; RUSSELL 2011).
The third study presents the body temperatures of calves
that were submitted to different vaccines and then tested to
verify their effectiveness (MILLIKEN; JOHNSON, 1943).

Results

Initially, conditional structures were created for the
packet-checking functions in R, so that all the packages
needed to run the tests were installed and/or loaded. The
packages and their purposes are shown in Table 1.

Table 1 – Packages used by the Bayes function.

Packages Objective

lmtest Performing the Durbin-Watson test

multcomp Performing multiple comparison tests

mvtnorm Generation of the data chains

stringr Formatting tables

dplyr Ordering data

car Ordering data

Source: The authors.

Then, the function qpostbayes calculate the co-
variance matrix, the mean vectors and the degree
of freedom to generate the multivariate t distribu-
tion. By means of the qpostbayes function were gen-
erated k chains of means, using the Monte Carlo
method, and the standardized amplitude the posteriori

(ANDRADE; ROCHA; SILVA, 2017).
In relation to the optimizations and corrections

performed for the pbayes test, the limits generated
from equation (3) were used to test the hypothe-
sis of equality of means. The section correspond-
ing to this step in the optimized code is present in
Algorithm 1.

Algorithm 1 - Part of the code for generating upper and
lower limits with the comparison between treatments
for (i in 1:nlevels (file$trt))
{

for ( j in i:nlevels (file$trt))
{
if (i ! = j)
{

LI[,n] =Chain1[, i]−Chain1[, j]−Chain1[,kk]∗q$sigh

LS[,n] =Chain1[, i]−Chain1[, j]+Chain1[,kk]∗q$sigh

comp1[n] = i
comp2[n] = j
n = n+1

}
}

}

Source: The authors.

For the dbayes test, the hypothesis of equality of aver-
ages by means of the function delta in the code was tested.
The absolute value of the difference between the pairs of
means of treatments was compared with the delta. For any
amplitude bigger then delta, there is a difference between
the treatments compared; otherwise, the treatments are
equal.

While the pbayes test, the hypothesis of means equal-
ity was tested by calculating the probability posteri-

ori of the intervals containing the zero value. For this,
created a vector that stores the probability values of
the test, generating the Algorithm 1 where the sym-
bol ′′ns′′ indicates that there is no difference between
the means of the treatments and the symbol ′′∗′′ in-
dicates that there is a significant difference, as the
Algorithm 2.
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Algorithm 2 - Conditional structure to characterize the

comparisons between the treatments using ′′∗′′ and ′′ns′′

dif.letters <− c(seq(choose(nlevels(file$trt),2)))

counter=0

for (i in 1:nlevels(file$trt)-1))

{

for ( j in (i+1):nlevels(file$trt))

{

counter=counter+1

Y=mean[i]- mean[ j]

Y=abs(Y)

if ( Y < delta)

{

dif.letters [counter]=′′ns′′

} else

{

dif.letters [counter]=′′∗′′

}

}

}

Source: The authors.

Another improved point was regarding the output of
results to the user. Through the functions to generating
tables it was possible to improve the organization of the in-
formation, facilitating the visualization and improving the
aesthetics of the presentation of the comparisons between
the tests.

Table 2 show the Algorithm 2 after the optimization.

Table 2 – Output of the Algorithm 2 comparing dbayes
and pbayes tests after optimization.

Comparison of Tests

dbayes_Test bayes_Test

B – A = = 0 * ns

C – A = = 0 * *

C – B = = 0 ns ns

Source: The authors.

The modification of the parameters Syb and Y b

contributes to the optimization of the qpostbayes

function, essential for the calculation of the mini-
mum significant difference ∆. Algorithms 3 and 4
show the parameters Syb and Y b, respectively, in R
code. In addition, the vector nrt used to the calcu-
lation of Y b and Syb is presented in Algorithm 5,
in R code.

Algorithm 3 - Fragments of the R code developed for

the parameter Syb

for (i in 1:nlevels(file$trt))

{

for (l in 1:nlevels(file$trt))

{

if (i= =l)

{

mvariance[i,l]=vvariance[i]/nrt[i]

}

if (i ! = l)

{

mvariance[i, l] = 0

}

}

}

Source: The authors.

Algorithm 4 - Fragments of the R code developed for

the parameter Y b

for (i in 1:nlevels(file$trt))

{

mean[i]=0

sum=0

for (l in 1:nlevels(file$trt))

{

if (file$trt[marker] == file$trt[l])

{

if (is.na(file$y[l]))

{

}

else

{

sum=sum+file$y[l]

}

counter = counter+1

}

}

mean[i] = sum/nrt[i]

}

Source: The authors.
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Algorithm 5 - Fragments of the R code developed for

the vector nrt

for (i in 1:nlevels(file$trt))

{

nrt[i]=0

for (l in marker:length(file$trt))

{

if (file$trt[marker] == file$trt[l])

{

counter = conter+1

}

}

for (i in 1:length(file$y))

{

if (is.na(file$y[i]))

{

for (l in 1:nlevels(file$trt))

{

if (l = =1)

{

if (i<=pos[l])

{

nrt[l]=nrt[l]-1

}

else

{

if ((i>pos[l-1]) && (i<=pos[l]))

{

nrt[l]=nrt[l]-1

}

}

}

}

}

}

}

Source: The authors.

For the Bayes function (N,al pha, f ile), the following
parameters were used: N = 10 000, α = 0.05 and the data
file adapted from Stell & Torrie (1980). Table 3 presents
the analysis of the performance of tests, with the results
of the present code and those verified by Andrade, Rocha
and Silva (2017).

Table 3 – Comparison between the results of the opti-
mized code and that presented by Andrade, Rocha and
Silva (2017).

Old code Optimized code

Tests dbayes pbayes dbayes pbayes

2-1 = = 0 * * * *

3-1 = = 0 ns * ns ns

4-1 = = 0 * * * *

5-1 = = 0 ns * ns ns

3-2 = = 0 ns * ns ns

4-2 = = 0 ns ns ns ns

5-2 = = 0 ns * ns ns

4-3 = = 0 * * * *

5-3 = = 0 ns ns ns ns

5-4 = = 0 ns * ns ns

Source: The authors.

It turns out that after optimizing the code, the dbayes

tests showed the same sensitivity. However, the results
are different. Although it did not directly modify the
dbayes function, there were differences in the results
due to the modification of the Syb and Y b parameters
related to the delta calculation. In relation to the pbayes

test, it identified a smaller number of differences, dif-
fering from the results found by Andrade, Rocha and
Silva (2017) due to the corrections of the acceptance in-
tervals. However, the current results are in agreement
with those presented by Andrade and Ferreira (2010).
It is worth noting that the variances are not homoge-
neous, being a restriction to the use of conventional
tests.

Table 4 shows the output, in R, of the code op-
timized for the data of the experiment presented by
Box, Hunter and Hunter (2005). In this table it is
shown: the tests performed, their p-value and whether
the assumptions were fulfilled or not. The Bartlett
test (BARTLETT, 1937), Shapiro-Wilk test (SHAPIRO;
WILK, 1965) and Durbin-Watson test (DURBIN; WAT-
SON, 1950) were used to verify the assumptions of ho-
mogeneity of variances, normality and independence of
residues, respectively. It is observed that all the assump-
tions were having been attended, so the traditional tests
are valid. Table 5 shows the comparison of the dbayes

and pbayes tests with the traditional tests: Tukey, SK and
CCF .
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Table 4 – Table of validity of the tests for second study.

Validity of Tests

Tests pvalue_Tests Results_Tests

Normality Shapiro 0.48184 Attended

Indep. of
the erros

Dubin-
watson

0.34431 Attended

homoce-
dasticity

Bartlett 0.50755 Attended

Conclusion: The analysis of variance is valid, since all

the assumpitions have been attended

Source: The authors.

Table 5 – Comparison of dbayes and pbayes tests with
other tests for the set of data presented by Box, Hunter
and Hunter (2005).

Comparisons
Tests

Tukey CCF SK dbayes pbayes

A-B * ns ns ns ns

C-A ns ns ns * ns

D-A * * * ns ns

C-B * ns * ns ns

D-B ns ns ns * ns

D-C ns ns ns * *

Source: The authors.

It was observed that dbayes test detected a greater
amount of differences between the treatments regard-
ing to pbayes, CCF and SK tests and the same sensi-
tivity as the Tukey test. And note that the pbayes test
had the same sensitivity as the CCF test. These results
are relevant since they show the good sensitivity of
the tests, mainly the dbayes, for experiments with bal-
anced data and assumption of the analysis of variance
attended.

For the second experiment provided by Westfall, Ran-
dall and Russell (2011), the pbayes and dbayes tests were
compared with the Tukey-Kramer test. The results are
shown in Table 6.

It is verified that the dbayes test presents better result
that the Tukey-Kramer and pbayes tests, showing that there
are differences between the means of treatments analyzed.
Therefore, the dbayes test performs well with data that
contains unbalanced data. It is observed that the pbayes

test did not detect significant differences between treat-
ments b3 e b2, evidencing a lower sensibility in relation
to the Tukey-Kramer test.

Table 6 – Comparison of the dbayes and pbayes tests
with the Tukey-Kramer test for the dataset presented by
Westfall, Randall and Russell (2011).

Comparisons
Tests

Tukey-Kramer dbayes pbayes

b1-b0 ns ns ns

b2-b0 * * *

b3-b0 ns ns ns

b2-b1 ns * ns

b3-b1 ns ns ns

b3-b2 * * ns

Source: The authors.

Finally, Table 7 shows the results of the pbayes and
dbayes tests for the third experiment, in which the data
were provided by Milliken and Johnson (1943). These
were also compared to Tukey-Kramer test.

Table 7 – Comparison of the dbayes and pbayes tests
with the Tukey-Kramer test for the data set presented by
Milliken and Johnson (1943).

Treatments
Tests

Tukey-Kramer dbayes pbayes

VaccineA–VaccineB * * *

VaccineA–VaccineC ns ns ns

VaccineA–VaccineD * * *

VaccineA–VaccineE * * *

VaccineA–VaccineF * * *

VaccineA–VaccineG ns ns ns

VaccineB–VaccineC * * *

VaccineB–VaccineD ns ns ns

VaccineB–VaccineE ns ns ns

VaccineB–VaccineF ns ns ns

VaccineB–VaccineG * * ns

VaccineC–VaccineD * * *

VaccineC–VaccineE * * *

VaccineC–VaccineF * * *

VaccineC–VaccineG ns ns ns

VaccineD–VaccineE ns ns ns

VaccineD–VaccineF ns ns ns

VaccineD–VaccineG * * *

VaccineE–VaccineF ns ns ns

VaccineE–VaccineG * * ns

VaccineF–VaccineG * * *

Source: The authors.

It is observed that pbayes test presented an identical
result to the Tukey-Kramer result, evidencing a good sen-
sibility in the detection of data with a large number of
treatments and with unbalanced data. However, the pbayes

test identified a smaller number of differences than the
other tests, presenting a lower sensitivity.
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Conclusion

The optimizations of the Bayes function were per-
formed and implemented successfully in R. Positive re-
sults were obtained in relation to the output to the user and
the reliability of the tests was increased. In addition, there
was the expansion of the Bayes function, allowing the per-
formance of the pbayes and dbayes tests for unbalanced
data.

The optimized Bayes function allowed the dbayes and
pbayes tests to have satisfactory results for the case where
traditional tests are valid. In addition, in specific cases, as
in the second experiment (unbalanced data with a small
number of treatments) the dbayes test presents better re-
sults than the Tukey-Kramer test. It is worth mentioning
that the Bayes function is very important in statistical anal-
ysis since the pbayes and dbayes tests are valid with or
without the assumptions required by the analysis of vari-
ance for both balanced and unbalanced data. Some open
questions that should be addressed in future work are the
implementations of the function of randomized block de-
sign and the extension of these ideas to other experimental
arrangements.
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