Validation of in situ disappearance curves utilizing mathematical models for incubating fish meal and cottonseed meal

Valiollah Palangi, Maghsoud Besharati

Abstract


Four mathematical models were used to describe the ruminal disappearance of dry matter (DM) and crude protein (CP) of fish meal and cottonseed meal. Results of DM degradability particularity showed that all the models fitted well (R2 > 0.95), however, considering that values below 0 or above 100 are not biologically justified in ruminal degradability, they are not acceptable. The models I and II were accepted to ruminal DM degradability of fish meal and cottonseed meal data. Only models I and II were successfully fitted to CP degradability of fish meal (R2 > 0.96), and the I, II and III models were acceptable to ruminal CP degradability of cottonseed meal (R2 > 0.98). In terms of effective degradability (ED) of DM and CP, model II generated higher values than other models. To appreciate fully the role of mathematical modelling in the biological sciences, it is necessary to consider the nature of feeds that evaluated and to review the types of models that may be constructed.

Keywords


Fish meal; Cottonseed meal; In situ technique; Mathematical models.

Full Text:

PDF

References


Bannink, A., van Lingen, H. J., Ellis, J. L., France, J., & Dijkstra, J. (2016). The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism. Frontiers in Microbiology, 7, 1820. doi: 10.3389/ fmicb.2016.01820

Çavdar, T., Mohammad, M., & Milani, R. A. (2013). A new heuristic approach for inverse kinematics of robot arms. Advanced Science Letters, 19(1), 329-333. doi: 10.1166/asl.2013.4700

Chanzanagh, E. G., Seifdavati, J., Gheshlagh, F. M. A., Abdibenemar, H., & Seyedsharifi, R. (2019). Comparison of two mathematical models to describe the rumen fermentation parameters of some sources of plant and animal protein using in vitro gas method. Asian Journal of Research in Animal and Veterinary Sciences, 3(1), 1-6. Recovered from http://www.sdiarticle3.com/review-history/47943

Dhanoa, M. S., France, J., Siddons, R. C., Lopez, S., & Buchanan, S. J .G. (1995). A non-linear compartmental model to describe for age degradation kinetics during incubation in polyester bags in the rumen. British Journal of Nutrition, 73, 3-15. doi: 10.1079/BJN19950004

Dijkstra, J., Bannink, A., Bosma, P. M., Lantinga, E. A., & Reijs, J. W. (2018). Modeling the effect of nutritional strategies for dairy cows on the composition of excreta nitrogen. Frontiers in Sustainable Food Systems, 2, 63. doi: 10.3389/fsufs.2018.00063

France, J., Thornley, J. H. M., Lopez, S., Siddons, R. C., Dhanoa, M. S., Van Soest, P. J., & Gill, M. (1990). On the two-compartment model for estimating extent of feed degradation in the rumen. Journal of Theoretical Biology, 146, 269-287. doi: 10.1016/S0022-5193(05)80139-0

Gregorini, P., Provenza, F. D., Villalba, J. J., Beukes, P. C., & Forbes, M. J. (2018). Dynamics of forage ingestion, oral processing and digesta outflow from the rumen: a development in a mechanistic model of a grazing ruminant, MINDY. The Journal of Agricultural Science, 156(8), 980-995. doi: 10.1017/S00 21859618000886

Hanigan, M. D., & Daley, V. L. (2019). Use of mechanistic nutrition models to identify sustainable food animal production. Annual Review of Animal Biosciences, 8, 355-376. doi: 10.1146/annurev-animal-021 419-083913

Jin, L., Dunière, L., Lynch, J. P., Zaheer, R., Turkington, K., Blackshaw, R. E., & Baah, J. (2017). Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on ensiling and digestion kinetics of mixed small grain silage. Grass and Forage Science, 72(1), 80-92. doi: 10.1111/gfs.12217

Lapierre, H., Larsen, M., Sauvant, D., Van Amburgh, M. E., & Van Duinkerken, G. (2018). Converting nutritional knowledge into feeding practices: a case study comparing different protein feeding systems for dairy cows. Animal, 12(s2), s457-s466. doi: 10.1017/S1751731118001763

Lopes, F. C. F., Campos, M. M., Borges, A. L. D. C. C., Pancoti, C. G., Reis, R., & Moreira, T. S. (2018). Rumen parameters and passage rate in cattle fed diets based on sugarcane hydrolyzed with calcium oxide. Semina: Ciências Agrárias, 39(6), 2783-2794. doi: 10.5433/1679-0359.2018v39n6p2783

Milani, M. M. R. A., Çavdar, T., & Aghjehkand, V. F. (2012). Particle swarm optimization based determination of Ziegler-Nichols parameters for PID controller of brushless DC motors. International Symposium on Innovations in Intelligent Systems and Applications (pp. 1-5). IEEE. doi: 10.1109/ INISTA.2012.6246984

Oberson, J. L., Probst, S., & Schlegel, P. (2019). Magnesium absorption as influenced by the rumen passage kinetics in lactating dairy cows fed modified levels of fibre and protein. Animal, 13(7), 1412-1420. doi: 10.1017/S1751731118002963

Ørskov, E. R., Hovel, F. D. B., & Mould, F. L. (1980). The use of the nylon bag technique for evaluation of feedstuffs. Tropical Animal Production, 5, 195-213. Recovered from http://www.fao.org/WAICENT/ faoINFO/AGRICULT/AGA/AGAP/FRG/TAP53/53_1.pdf

Ørskov, E. R. I., & McDonald, I. M. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Sciences, 92, 499-503. doi: 10.1017/S0021859600063048

Palangi, V., & Macit, M. (2019). In situ crude protein and dry matter ruminal degradability of heat-treated barley. Revue de Medecine Veterinaire, 170(7-9), 123-128. Recovered from https://www.revmedvet. com/2019/RMV170_123_128.pdf

Reed, K. F., Arhonditsis, G. B., France, J., & Kebreab, E. (2016). Bayesian calibration of dynamic ruminant nutrition models. Journal of Dairy Science, 99(8), 6362-6370. doi: 10.3168/jds.2015-10708

Rochen, N. M. R. Jr., Silva, M. C. da, Abreu, M. L. C., Oliveira, J. G. de, Glória, L. S., Tedeschi, L. O., & Vieira, R. A. M. (2020). The transit of external markers throughout the ruminant digestive tract: 1. The fitting quality of models to marker profiles in feces using an information-theoretic approach. Animal Feed Science and Technology, 261, 114407. doi: 10.1016/j.anifeedsci.2020.114407

Sauvant, D., & Noziere, P. (2016). Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems. Animal, 10(5), 755-770. doi: 10. 1017/S1751731115002670

Vaga, M., & Huhtanen, P. (2018). In vitro investigation of the ruminal digestion kinetics of different nitrogen fractions of 15n-labelled timothy forage. Plos One, 13(9), e0203385. doi: 10.1371/journal. pone.0203385

Van Soest, P. J. (2018). Nutritional ecology of the ruminant. Cornell University Press.

Yousefian, S., Teimouri Yansari, A., & Chashnidel, Y. (2019). The effects of Indigestible Neutral Detergent Fiber (iNDF) of alfalfa hay and corn silage on ruminal degradability of ration fiber in sheep. Iranian Journal of Applied Animal Science, 9(1), 73-78. Recovered from http://www.iaujournals.ir/article_6635 56.html




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p3391

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional