Effect of rehydration with whey and inoculation with Lactobacillus plantarum and Propionibacterium acidipropionici on the chemical composition, microbiological dynamics, and fermentative losses of corn grain silage

William Luiz de Souza, Iorrano Andrade Cidrini, Arnaldo Prata Neiva Júnior, Mateus Diniz Silva, Jéssica Rocha Sousa Gervásio, Mateus José Inácio de Abreu, Davison Costa Nascimento

Abstract


The objective of this study was to compare rehydrated corn grain silages using water or whey and inoculated (Lactobacillus plantarum and Propionibacterium acidipropionici) or not. We also verified whether rehydration with whey associated with the bacterial inoculant improves material conservation. The treatments were as follows: silages rehydrated with water without inoculant (SWa); silages rehydrated with water and inoculated (SWaI); silages rehydrated with whey without inoculant (SWe); silages rehydrated with whey and inoculated (SWeI). A completely randomized design was used, with three replications, treatments in a 2 × 2 factorial scheme (RE: rehydration with water or whey, and IN: inoculation or addition of water without chlorine), during the following storage periods (T): 0, 4, 8, 16, 32, and 64 days. There was an RE x IN x T interaction (P < 0.001) for dry matter (DM), with lower values over time for SWe and higher values in SWeI. An interaction between RE x IN (P < 0.001) and IN x T (P < 0.001) was observed for pH, with higher values for SWe at 64 days of storage and a reduction from the first days of ensiling for SWaI and SWeI. The microbiological variables showed an RE x IN x T interaction (P < 0.001), with the highest counts of lactic acid bacteria for SWaI and SWeI up to 8 days of storage and subsequent higher counts in SWa and SWe. Higher counts were obtained in SWe. For the variables of fermentative losses, there was an RE x IN x T interaction (P < 0.001), with SWeI showing lower losses. The inoculation associated with whey for rehydration of corn grain improved the fermentation profile of the silage, with lower pH values and reduced losses.

Keywords


Lactic acid bacteria; Propionic acid bacteria; Fermentative profile; Grain silage.

Full Text:

PDF

References


Amaral, R. C., Carvalho, B. F., Costa, D. M., Morenz, M. J. F., Schwan, R. F., & Silva Ávila, C. L. da. (2020). Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Animal Feed Science and Technology, 264(1), 114472. doi: 10.1016/j.anifeedsci.2020.114472

Anjos, G. V. S. dos, Gonçalves, L. C., Rodrigues, J. A. S., Keller, K. M., Coelho, M. M., Michel, P. H. F.,... Jayme, D. G. (2018). Effect of re-ensiling on the quality of sorghum silage. Journal of Dairy Science, 101(7), 6047-6054. doi: 10.3168/jds.2017-13687

Araújo, C. A., Santos, A. P. M., Figueiredo Monteiro, C. C., Lima, D. O., Torres, A. M., Santos, C. V. S.,... Silva, J. J. (2020). Efeito do tempo de ensilagem sobre a composição química, perfil fermentativo e estabilidade aeróbia de silagens de milho (Zea mays). Diversitas Journal, 5(1), 547-561. doi: 10. 17648/diversitas-journal-v5i1-1035

Arcari, M. A., Martins, C. M. D. M. R., Tomazi, T., & Santos, M. V. dos. (2016). Effect of the ensiling time of hydrated ground corn on silage composition and in situ starch degradability. Brazilian Journal of Veterinary Research and Animal Science, 53(1), 60-71. doi: 10.11606/issn.1678-4456.v53i1p60-71

Association of Official Analytical Chemists (1995). Official methods of analysis (16nd ed.). Washington, D.C.: AOAC.

Ávila, C. L. S., Bravo Martins, C. E. C., & Schwan, R. F. (2010). Identification and characterization of yeasts in sugarcane silages. Journal of Applied Microbiology, 109(5), 1677-1686. doi: 10.1111/j.1365-2672.2010.04796.x

Borreani, G., & Tabacco, E. (2010). The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. Journal of Dairy Science, 93(6), 2620-2629. doi: 10.3168/jds.2009-2919

Campos, S. A., Lana, R. P., Galvão, J. C. C., Souza, M. N., & Tavares, V. B. (2017). Efeito do esterco de galinha poedeira na produção de milho e qualidade da silagem. Revista Ceres, 64(3), 274-281. doi: 10. 1590/0034-737x201764030008

Carareto, R., Santos, F. A. P., Mourao, G. B., Pedroso, A. M., Sitta, C., Soares, M. P., & Soares, M. C. (2011). Corn grain processing methods and forage levels on diets for finishing Nellore bulls. Journal of Animal Science, 89(Suppl. 1), 115 (Abstr.).

Cardoso, L. L., Ribeiro, K. G., Marcondes, M. I., Pereira, O. G., & Wei?, K. (2019). Chemical composition and production of ethanol and other volatile organic compounds in sugarcane silage treated with chemical and microbial additives. Animal Production Science, 59(4), 721-728. doi: 10.1071/AN1620

Carvalho, B. F., Ávila, C. L. S., Bernardes, T. F., Pereira, M. N., Santos, C., & Schwan, R. F. (2017). Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. Journal of Applied Microbiology, 122(3), 589-600. doi: 10.1111/jam.13371

Cherney, J. H., & Cherney, D. J. R. (2003). Assessing silage quality. In D. R. Buxton R. E. Muck, & J. H Harrison. (Eds.), Silage science and technology (pp.141-198). Madison, Wisconsin: American Society of Agronomy. doi: 10.2134/agronmonogr42.c4

Edvan, R. L., Carneiro, M. S. S., Coutinho, M. J. F., Silva, E. B., Oliveira, G. S., Silva, M. S. M., & Albuquerque, D. R. (2013). Perdas e composição bromatológica de silagem de gliricídia contendo diferentes níveis de vagem de algaroba. Tecnologia & Ciência Agropecuária, 7(2), 63-68.

El-Shewy, A. A. (2016). Whey as a feed ingredient for lactating cattle. Science International, 4(3), 80-85. doi: 10.17311/sciintl.2016.80.85

Ferraretto, L. F., Crump, P. M., & Shaver, R. D. (2013). Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. Journal of Dairy Science, 96(1), 533-550. doi: 10.3168/jds.2012-5932

Ferreira, W. A. (1983). Armazenamento de grãos de cereais. In M. P. Cereda, L. Sanches (Eds.), Manual de armazenamento e embalagem de produtos agropecuários (pp. 96-128). Botucatu: UNESP.

França, A. M. S., Ferreira, I. C., Hermisdorff, Í. D. C., Mendonça, E. P., Fernandes, E. D. A., & Rossi, D. A. (2015). Dinâmica química, microbiológica e física da silagem de farelo úmido de glúten de milho. Ciência Rural, 45(4), 684-689. doi: 10.1590/0103-8478cr20140716

Gharechahi, J., Kharazian, Z. A., Sarikhan, S., Jouzani, G. S., Aghdasi, M., & Hosseini Salekdeh, G. (2017). The dynamics of the bacterial communities developed in maize silage. Microbial Biotechnology, 10(6), 1663-1676. doi: 10.1111/1751-7915.12751

Jobim, C. C., Nussio, L. G., Reis, R. A., & Schmidt, P. (2007). Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36(Supl. Spe.), 101-119. doi: 10. 15 90/S1516-35982007001000013S

Leão, G. F. M., Jobim, C. C., Neumann, M., Horst, E. H., Santos, S. K. D., Venancio, B. J., & Santos, L. C. (2017). Nutritional composition and aerobic stability of winter cereal silage at different storage times. Acta Scientiarum. Animal Sciences, 39(2), 131-136. doi: 10.4025/actascianimsci.v39i2.34270

McDonald, P. (1981). The biochemistry of silage. Chichester: John Wiley & Sons, Ltd.

Michel, P. H. F., Gonçalves, L. C., Rodrigues, J. A. S., Keller, K. M., Raposo, V. S., Lima, E. M. & Jayme, D. G. (2017). Re?ensiling and inoculant application with Lactobacillus plantarum and Propionibacterium acidipropionici on sorghum silages. Grass and Forage Science, 72(3), 432-440. doi: 10.1111/gfs.12253

Mombach, M. A., Pereira, D. H., Santos Pina, D. do, Pereira, O. G., & Bolson, D. C. (2018). Rehydration of dry corn grain as an alternative for conservation purposes. Australian Journal of Crop Science, 12(9), 1472. doi: 10.21475/ajcs.18.12.09.PNE1155

Muck, R. E. (2010). Silage microbiology and its control through additives. Revista Brasileira de Zootecnia, 39(supl.spe.), 183-191. doi: 10.1590/S1516-35982010001300021

Nishanthi, M., Vasiljevic, T., & Chandrapala, J. (2017). Properties of whey proteins obtained from different whey streams. International Dairy Journal, 66(1), 76-83. doi: 10.1016/j.idairyj.2016.11.009

Oliveira, C. A., & Millen, D. D. (2014). Survey of the nutritional recommendations and management practices adopted by feedlot cattle nutritionists in Brazil. Animal Feed Science and Technology, 197(8), 64-75. doi: 10.1016/j.anifeedsci.2014.08.010

Pires, D. A. A., Rocha, V. R. J., Sales, E. C. J., Reis, S. T., Jayme, D. G., Cruz, S. S.,... Esteves, B. L. C. (2013). Características das silagens de cinco genótipos de sorgo cultivados no inverno. Revista Brasileira de Milho e Sorgo, 12(1), 68-77. doi: 10.18512/1980-6477/rbms.v12n1p68-77

Rabelo, C. H. S., Rezende, A. V., Nogueira, D. A., Rabelo, F. H. S., Senedese, S. S., Vieira, P. F.,... Carvalho, A. (2012). Perdas fermentativas e estabilidade aeróbia de silagens de milho inoculadas com bactérias ácido-láticas em diferentes estádios de maturidade. Revista Brasileira Saúde Produção Animal, 13(3), 656-668. doi: 10.1590/S1519-99402012000300006

Rezende, A. V., Rabelo, C. H., Veiga, R. M., Andrade, L. P., Härter, C. J., Rabelo, F. H.,... & Reis, R. A. (2014). Rehydration of corn grain with acid whey improves the silage quality. Animal Feed Science and Technology, 197(11), 213-221. doi: 10.1016/j.anifeedsci.2014.07.009

Rigueira, J. P. S., Pereira, O. G., Ribeiro, K. G., Mantovani, H. C., & Agarussi, M. C. N. (2013). The chemical composition, fermentation profile, and microbial populations in tropical grass silages. Revista Brasileira de Zootecnia, 42(9), 612-621. doi: 10.1590/S1516-35982013000900002

Silva, N. C. da, Nascimento, C. F., Nascimento, F. A., Resende, F. D. de, Daniel, J. L. P., & Siqueira, G. R. (2018). Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. Journal of Dairy Science, 101(5), 4158-4167. doi: 10.3168/jds.2017-13797

Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Vinderola, G., Ouwehand, A., Salminen, S., & Von Wright, A. (Eds.). (2019). Lactic acid bacteria: microbiological and functional aspects. Boca Raton, Florida: Crc Press.

Windle, M. C., Walker, N., & Kung, L., Jr. (2014). Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time. Journal of Dairy Science, 97(5), 3053-3060. doi: 10.3168/jds.2013-7586

Yitbarek, M. B., & Tamir, B. (2014). Silage additives: review. Open Journal of Applied Sciences, 4(5), 258-274. doi: 10.4236/ojapps.2014.45026

Zhou, Y., Drouin, P., & Lafrenière, C. (2016). Effect of temperature (5-25 C) on epiphytic lactic acid bacteria populations and fermentation of whole plant corn silage. Journal of Applied Microbiology, 121(3), 657-671. doi: 10.1111/jam.13198




DOI: http://dx.doi.org/10.5433/1679-0359.2020v41n6Supl2p3351

Semina: Ciênc. Agrár.
Londrina - PR
E-ISSN 1679-0359
DOI: 10.5433/1679-0359
E-mail: semina.agrarias@uel.br
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional